Suppr超能文献

酶动力学的反应途径统计力学。

Reaction-path statistical mechanics of enzymatic kinetics.

机构信息

Department of Chemistry, Seoul National University, Seoul 08826, South Korea.

出版信息

J Chem Phys. 2022 Apr 7;156(13):134108. doi: 10.1063/5.0075831.

Abstract

We introduce a reaction-path statistical mechanics formalism based on the principle of large deviations to quantify the kinetics of single-molecule enzymatic reaction processes under the Michaelis-Menten mechanism, which exemplifies an out-of-equilibrium process in the living system. Our theoretical approach begins with the principle of equal a priori probabilities and defines the reaction path entropy to construct a new nonequilibrium ensemble as a collection of possible chemical reaction paths. As a result, we evaluate a variety of path-based partition functions and free energies by using the formalism of statistical mechanics. They allow us to calculate the timescales of a given enzymatic reaction, even in the absence of an explicit boundary condition that is necessary for the equilibrium ensemble. We also consider the large deviation theory under a closed-boundary condition of the fixed observation time to quantify the enzyme-substrate unbinding rates. The result demonstrates the presence of a phase-separation-like, bimodal behavior in unbinding events at a finite timescale, and the behavior vanishes as its rate function converges to a single phase in the long-time limit.

摘要

我们引入了一种基于大偏差原理的反应路径统计力学形式主义,以量化米氏酶促反应过程在迈克尔is-门滕机制下的动力学,这是生命系统中一种非平衡过程的范例。我们的理论方法从先验概率相等的原理开始,定义反应路径熵,以构建一个新的非平衡系综,作为可能的化学反应路径的集合。因此,我们通过使用统计力学的形式主义来评估各种基于路径的配分函数和自由能。它们使我们能够计算给定酶促反应的时间尺度,即使在没有明确边界条件的情况下,这对于平衡系综是必要的。我们还考虑了在固定观测时间的封闭边界条件下的大偏差理论,以量化酶-底物解结合速率。结果表明,在有限的时间尺度上,解结合事件中存在类似相分离的双峰行为,并且随着速率函数在长时间极限收敛到单个相,该行为消失。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验