Suppr超能文献

通过机械变形增强多晶纳米框架上的磁响应。

Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformation.

作者信息

Castro Mario, Baltazar Samuel E, Rojas-Nunez Javier, Bringa Eduardo, Valencia Felipe J, Allende Sebastian

机构信息

Universidad de Santiago de Chile (USACH), Facultad de Ciencia, Departamento de Física, Santiago, Chile.

Universidad de Santiago de Chile (USACH), Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Santiago, Chile.

出版信息

Sci Rep. 2022 Apr 8;12(1):5965. doi: 10.1038/s41598-022-09647-2.

Abstract

The mechanical and magnetic properties of polycrystalline nanoframes were investigated using atomistic molecular dynamics and micromagnetic simulations. The magneto-mechanical response of Fe hollow-like nanocubes was addressed by uniaxial compression carried out by nanoindentation. Our results show that the deformation of a nanoframe is dominated at lower strains by the compression of the nanostructure due to filament bending. This leads to the nanoframe twisting perpendicular to the indentation direction for larger indentation depths. Bending and twisting reduce stress concentration and, at the same time, increase coercivity. This unexpected increase of the coercivity occurs because the mechanical deformation changes the cubic shape of the nanoframe, which in turn drives the system to more stable magnetic states. A coercivity increase of almost 100 mT is found for strains close to 0.03, which are within the elastic regime of the Fe nanoframe. Coercivity then decreases at larger strains. However, in all cases, the coercivity is higher than for the undeformed nanoframe. These results can help in the design of new magnetic devices where mechanical deformation can be used as a primary tool to tailor the magnetic response on nanoscale solids.

摘要

利用原子分子动力学和微磁模拟研究了多晶纳米框架的力学和磁性能。通过纳米压痕进行单轴压缩,研究了铁空心纳米立方体的磁机械响应。我们的结果表明,在较低应变下,纳米框架的变形主要由细丝弯曲导致的纳米结构压缩主导。这导致在较大压痕深度时,纳米框架垂直于压痕方向扭转。弯曲和扭转降低了应力集中,同时增加了矫顽力。矫顽力出现这种意外增加是因为机械变形改变了纳米框架的立方形状,进而驱使系统进入更稳定的磁状态。对于接近0.03的应变,发现矫顽力增加了近100 mT,这些应变处于铁纳米框架的弹性范围内。然后在较大应变下矫顽力降低。然而,在所有情况下,矫顽力都高于未变形的纳米框架。这些结果有助于设计新型磁性器件,其中机械变形可作为在纳米级固体上定制磁响应的主要工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f3d/8993879/cc9acec826d5/41598_2022_9647_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验