Dos Santos Gonzalo, Meyer Robert, Tramontina Diego, Bringa Eduardo M, Urbassek Herbert M
CONICET and Facultad de Ingeniería, Universidad de Mendoza, Mendoza, 5500, Argentina.
Physics Department and Research Center OPTIMAS, University Kaiserslautern-Landau, Erwin-Schrödinger-Straße, 67663, Kaiserslautern, Germany.
Sci Rep. 2023 Aug 31;13(1):14282. doi: 10.1038/s41598-023-41499-2.
Compression of a magnetic material leads to a change in its magnetic properties. We examine this effect using spin-lattice dynamics for the special case of bcc-Fe, using both single- and poly-crystalline Fe and a bicontinuous nanofoam structure. We find that during the elastic phase of compression, the magnetization increases due to a higher population of the nearest-neighbor shell of atoms and the resulting higher exchange interaction of neighboring spins. In contrast, in the plastic phase of compression, the magnetization sinks, as defects are created, increasing the disorder and typically decreasing the average atom coordination number. The effects are more pronounced in single crystals than in polycrystals, since the presence of defects in the form of grain boundaries counteracts the increase in magnetization during the elastic phase of compression. Also, the effects are more pronounced at temperatures close to the Curie temperature than at room temperature. In nanofoams, the effect of compression is minor since compression proceeds more by void reduction and filament bending-with negligible effect on magnetization-than by strain within the ligaments. These findings will prove useful for tailoring magnetization under strain by introducing plasticity.
对磁性材料施加压力会导致其磁性能发生变化。我们针对体心立方铁(bcc-Fe)的特殊情况,利用自旋-晶格动力学,通过使用单晶和多晶铁以及双连续纳米泡沫结构来研究这种效应。我们发现,在压缩的弹性阶段,由于最近邻原子壳层中原子数量增加以及相邻自旋之间由此产生的更强交换相互作用,磁化强度会增加。相比之下,在压缩的塑性阶段,由于产生了缺陷,无序度增加且平均原子配位数通常降低,磁化强度会下降。这些效应在单晶中比在多晶中更为明显,因为晶界形式的缺陷会抵消压缩弹性阶段磁化强度的增加。此外,在接近居里温度时这些效应比在室温时更为明显。在纳米泡沫中,压缩的影响较小,因为压缩主要是通过减少空隙和细丝弯曲进行的——对磁化强度的影响可忽略不计——而不是通过韧带内部的应变。这些发现对于通过引入塑性来在应变下调整磁化强度将是有用的。