Suppr超能文献

一种基于机器学习的肌萎缩侧索硬化症疾病严重程度客观测量方法。

A machine-learning based objective measure for ALS disease severity.

作者信息

Vieira Fernando G, Venugopalan Subhashini, Premasiri Alan S, McNally Maeve, Jansen Aren, McCloskey Kevin, Brenner Michael P, Perrin Steven

机构信息

ALS Therapy Development Institute, Watertown, MA, USA.

Google Research, Google, Mountain View, CA, USA.

出版信息

NPJ Digit Med. 2022 Apr 8;5(1):45. doi: 10.1038/s41746-022-00588-8.

Abstract

Amyotrophic Lateral Sclerosis (ALS) disease severity is usually measured using the subjective, questionnaire-based revised ALS Functional Rating Scale (ALSFRS-R). Objective measures of disease severity would be powerful tools for evaluating real-world drug effectiveness, efficacy in clinical trials, and for identifying participants for cohort studies. We developed a machine learning (ML) based objective measure for ALS disease severity based on voice samples and accelerometer measurements from a four-year longitudinal dataset. 584 people living with ALS consented and carried out prescribed speaking and limb-based tasks. 542 participants contributed 5814 voice recordings, and 350 contributed 13,009 accelerometer samples, while simultaneously measuring ALSFRS-R scores. Using these data, we trained ML models to predict bulbar-related and limb-related ALSFRS-R scores. On the test set (n = 109 participants) the voice models achieved a multiclass AUC of 0.86 (95% CI, 0.85-0.88) on speech ALSFRS-R prediction, whereas the accelerometer models achieved a median multiclass AUC of 0.73 on 6 limb-related functions. The correlations across functions observed in self-reported ALSFRS-R scores were preserved in ML-derived scores. We used these models and self-reported ALSFRS-R scores to evaluate the real-world effects of edaravone, a drug approved for use in ALS. In the cohort of 54 test participants who received edaravone as part of their usual care, the ML-derived scores were consistent with the self-reported ALSFRS-R scores. At the individual level, the continuous ML-derived score can capture gradual changes that are absent in the integer ALSFRS-R scores. This demonstrates the value of these tools for assessing disease severity and, potentially, drug effects.

摘要

肌萎缩侧索硬化症(ALS)的疾病严重程度通常使用基于问卷的主观修订版ALS功能评定量表(ALSFRS-R)来衡量。疾病严重程度的客观测量方法将成为评估现实世界中药物疗效、临床试验效果以及识别队列研究参与者的有力工具。我们基于一个为期四年的纵向数据集的语音样本和加速度计测量结果,开发了一种基于机器学习(ML)的ALS疾病严重程度客观测量方法。584名ALS患者同意并完成了规定的言语和肢体任务。542名参与者提供了5814条语音记录,350名参与者提供了13009个加速度计样本,同时测量了ALSFRS-R评分。利用这些数据,我们训练了ML模型来预测与延髓相关和与肢体相关的ALSFRS-R评分。在测试集(n = 109名参与者)中,语音模型在语音ALSFRS-R预测方面实现了多类AUC为0.86(95%CI,0.85 - 0.88),而加速度计模型在6项与肢体相关的功能上实现了多类AUC中位数为0.73。在自我报告的ALSFRS-R评分中观察到的各功能之间的相关性在ML得出的评分中得以保留。我们使用这些模型和自我报告的ALSFRS-R评分来评估已获批用于ALS的药物依达拉奉的现实世界效果。在作为常规治疗一部分接受依达拉奉的54名测试参与者队列中,ML得出的评分与自我报告的ALSFRS-R评分一致。在个体层面,连续的ML得出的评分可以捕捉到整数ALSFRS-R评分中不存在的逐渐变化。这证明了这些工具在评估疾病严重程度以及潜在药物效果方面的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad3e/8993812/b01f9cd3e42f/41746_2022_588_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验