Suppr超能文献

关于深度神经网络模型的因子归一化的注释。

A note on factor normalization for deep neural network models.

机构信息

Guanghua School of Management, Peking University, Beijing, 100871, China.

Center for Applied Statistics and School of Statistics, Renmin University of China, Beijing, 100872, China.

出版信息

Sci Rep. 2022 Apr 8;12(1):5909. doi: 10.1038/s41598-022-09910-6.

Abstract

Deep neural network (DNN) models often involve high-dimensional features. In most cases, these high-dimensional features can be decomposed into two parts: a low-dimensional factor and residual features with much-reduced variability and inter-feature correlation. This decomposition has several interesting theoretical implications for DNN training. Based on these implications, we develop a novel factor normalization method for better performance. The proposed method leads to a new deep learning model with two important characteristics. First, it allows factor-related feature extraction, and second, it allows for adaptive learning rates for factors and residuals. These model features improve the convergence speed on both training and testing datasets. Multiple empirical experiments are presented to demonstrate the model's superior performance.

摘要

深度神经网络 (DNN) 模型通常涉及高维特征。在大多数情况下,这些高维特征可以分解为两部分:低维因子和具有大大降低的可变性和特征间相关性的残差特征。这种分解对 DNN 训练具有几个有趣的理论意义。基于这些含义,我们开发了一种新的因子归一化方法,以获得更好的性能。所提出的方法导致了一种新的深度学习模型,具有两个重要特征。首先,它允许进行与因子相关的特征提取,其次,它允许对因子和残差进行自适应学习率。这些模型特征提高了训练和测试数据集上的收敛速度。多个经验实验证明了该模型的优越性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4af8/8993835/558d5d101792/41598_2022_9910_Fig1_HTML.jpg

相似文献

1
A note on factor normalization for deep neural network models.
Sci Rep. 2022 Apr 8;12(1):5909. doi: 10.1038/s41598-022-09910-6.
2
Two-Way Feature Extraction for Speech Emotion Recognition Using Deep Learning.
Sensors (Basel). 2022 Mar 19;22(6):2378. doi: 10.3390/s22062378.
3
DNN-PNN: A parallel deep neural network model to improve anticancer drug sensitivity.
Methods. 2023 Jan;209:1-9. doi: 10.1016/j.ymeth.2022.11.002. Epub 2022 Nov 18.
4
Deep-gKnock: Nonlinear group-feature selection with deep neural networks.
Neural Netw. 2021 Mar;135:139-147. doi: 10.1016/j.neunet.2020.12.004. Epub 2020 Dec 14.
5
A deep neural network prediction method for diabetes based on Kendall's correlation coefficient and attention mechanism.
PLoS One. 2024 Jul 2;19(7):e0306090. doi: 10.1371/journal.pone.0306090. eCollection 2024.
6
Using a deep convolutional network to predict the longitudinal dispersion coefficient.
J Contam Hydrol. 2021 Jun;240:103798. doi: 10.1016/j.jconhyd.2021.103798. Epub 2021 Mar 19.
7
Computer-aided diagnosis of ground glass pulmonary nodule by fusing deep learning and radiomics features.
Phys Med Biol. 2021 Mar 4;66(6):065015. doi: 10.1088/1361-6560/abe735.
8
A propagation-DNN: Deep combination learning of multi-level features for MR prostate segmentation.
Comput Methods Programs Biomed. 2019 Mar;170:11-21. doi: 10.1016/j.cmpb.2018.12.031. Epub 2018 Dec 29.
10
Using deep learning to associate human genes with age-related diseases.
Bioinformatics. 2020 Apr 1;36(7):2202-2208. doi: 10.1093/bioinformatics/btz887.

本文引用的文献

1
A Survey of Optimization Methods From a Machine Learning Perspective.
IEEE Trans Cybern. 2020 Aug;50(8):3668-3681. doi: 10.1109/TCYB.2019.2950779. Epub 2019 Nov 18.
2
Representative Factor Generation for the Interactive Visual Analysis of High-Dimensional Data.
IEEE Trans Vis Comput Graph. 2012 Dec;18(12):2621-30. doi: 10.1109/TVCG.2012.256.
3
High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics.
J Am Stat Assoc. 2008 Dec 1;103(484):1438-1456. doi: 10.1198/016214508000000869.
4
On the momentum term in gradient descent learning algorithms.
Neural Netw. 1999 Jan;12(1):145-151. doi: 10.1016/s0893-6080(98)00116-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验