Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam 781039, India.
Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India.
J Colloid Interface Sci. 2022 Aug;619:229-245. doi: 10.1016/j.jcis.2022.03.098. Epub 2022 Mar 28.
The formation of virus-laden colloidal respiratory microdroplets - the sneeze or cough virulets and their evaporation driven miniaturization in the open air are found to have a significant impact on the community transmission of COVID-19 pandemic.
We simulate the motions and trajectories of virulets by employing laminar fluid flow coupled with droplet tracing physics. A force field analysis has been included considering the gravity, drag, and inertial forces to unleash some of the finer features of virulet trajectories leading to the droplet and airborne transmissions of the virus. Furthermore, an analytical model corroborates temperature (T) and relative humidity (RH) controlled droplet miniaturization.
The study elucidates that the tiny (1-50 µm) and intermediate (60-100 µm) size ranged virulets tend to form bioaerosol and facilitate an airborne transmission while the virulets of larger dimensions (300 to 500 µm) are more prone to gravity dominated droplet transmission. Subsequently, the mapping between the T and RH guided miniaturization of virulets with the COVID-19 cases for six different cities across the globe justifies the significant contribution of miniaturization-based bioaerosol formation for community transmission of the pandemic.
载有病毒的胶体呼吸微液滴的形成——打喷嚏或咳嗽产生的病毒微液滴及其在空气中的蒸发驱动的小型化,被发现对 COVID-19 大流行的社区传播有重大影响。
我们通过采用层流流体流动并结合液滴跟踪物理来模拟病毒微液滴的运动和轨迹。考虑到重力、阻力和惯性力,我们进行了力场分析,以揭示病毒微液滴轨迹的一些更细微特征,从而导致病毒的液滴和空气传播。此外,分析模型证实了温度 (T) 和相对湿度 (RH) 控制的液滴小型化。
该研究阐明,微小(1-50 µm)和中等(60-100 µm)尺寸范围的病毒微液滴倾向于形成生物气溶胶,并促进空气传播,而较大尺寸(300 至 500 µm)的病毒微液滴更容易受到重力主导的液滴传播。随后,对全球六个不同城市的 COVID-19 病例与 T 和 RH 指导的病毒微液滴小型化之间的映射证明了基于小型化的生物气溶胶形成对大流行的社区传播的重大贡献。