Suppr超能文献

基于双谱的混合神经网络用于运动想象分类。

Bispectrum-based hybrid neural network for motor imagery classification.

作者信息

Liu Chang, Jin Jing, Daly Ian, Sun Hao, Huang Yitao, Wang Xingyu, Cichocki Andrzej

机构信息

Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China.

Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China; Shenzhen Research Institute of East China University of Technology, Shen Zhen, 518063, China.

出版信息

J Neurosci Methods. 2022 Jun 1;375:109593. doi: 10.1016/j.jneumeth.2022.109593. Epub 2022 Apr 6.

Abstract

BACKGROUND

The performance of motor imagery electroencephalogram (MI-EEG) decoding systems is easily affected by noise. As a higher-order spectra (HOS), the bispectrum is capable of suppressing Gaussian noise and increasing the signal-to-noise ratio of signals. However, the sum of logarithmic amplitudes (SLA) and the first order spectral moment (FOSM) features extracted from the bispectrum only use the numerical values of the bispectrum, ignoring the related information between different frequency bins.

NEW METHOD

In this study, we proposed a novel framework, termed a bispectrum-based hybrid neural network (BHNN), to make full use of bispectrum for improving the performance of the MI-based brain-computer interface (BCI). Specifically, the BHNN consisted of a convolutional neural network (CNN), gated recurrent units (GRU), and squeeze-and-excitation (SE) modules. The SE modules and CNNs are first used to learn the deep relation between frequency bins of the bispectrum estimated from different time window segmentations of the MI-EEG. Then, we used GRU to seek the overlooked sequential information of the bispectrum.

RESULTS

To validate the effectiveness of the proposed BHNN, three public BCI competition datasets were used in this study. The results demonstrated that the BHNN can achieve promising performance in decoding MI-EEG.

COMPARISON WITH EXISTING METHODS

The statistical test results demonstrated that the proposed BHNN can significantly outperform other competing methods (p < =0.05).

CONCLUSION

The proposed BHNN is a novel bispectrum-based neural network, which can enhance the decoding performance of MI-based BCIs.

摘要

背景

运动想象脑电图(MI-EEG)解码系统的性能很容易受到噪声的影响。作为一种高阶谱(HOS),双谱能够抑制高斯噪声并提高信号的信噪比。然而,从双谱中提取的对数幅度之和(SLA)和一阶谱矩(FOSM)特征仅使用了双谱的数值,忽略了不同频率区间之间的相关信息。

新方法

在本研究中,我们提出了一种新颖的框架,称为基于双谱的混合神经网络(BHNN),以充分利用双谱来提高基于MI的脑机接口(BCI)的性能。具体而言,BHNN由卷积神经网络(CNN)、门控循环单元(GRU)和挤压激励(SE)模块组成。首先使用SE模块和CNN来学习从MI-EEG的不同时间窗口分割估计得到的双谱频率区间之间的深度关系。然后,我们使用GRU来寻找双谱中被忽略的序列信息。

结果

为了验证所提出的BHNN的有效性,本研究使用了三个公开的BCI竞赛数据集。结果表明,BHNN在解码MI-EEG方面能够取得良好的性能。

与现有方法的比较

统计测试结果表明,所提出的BHNN能够显著优于其他竞争方法(p <= 0.05)。

结论

所提出的BHNN是一种新颖的基于双谱的神经网络,它可以提高基于MI的BCI的解码性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验