Suppr超能文献

建立一个口腔病变的多源数据库的图像采集和标注平台。

Image collection and annotation platforms to establish a multi-source database of oral lesions.

机构信息

Digital Health Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia.

Centre of Image and Signal Processing, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia.

出版信息

Oral Dis. 2023 Jul;29(5):2230-2238. doi: 10.1111/odi.14206. Epub 2022 Apr 25.

Abstract

OBJECTIVE

To describe the development of a platform for image collection and annotation that resulted in a multi-sourced international image dataset of oral lesions to facilitate the development of automated lesion classification algorithms.

MATERIALS AND METHODS

We developed a web-interface, hosted on a web server to collect oral lesions images from international partners. Further, we developed a customised annotation tool, also a web-interface for systematic annotation of images to build a rich clinically labelled dataset. We evaluated the sensitivities comparing referral decisions through the annotation process with the clinical diagnosis of the lesions.

RESULTS

The image repository hosts 2474 images of oral lesions consisting of oral cancer, oral potentially malignant disorders and other oral lesions that were collected through MeMoSA UPLOAD. Eight-hundred images were annotated by seven oral medicine specialists on MeMoSA ANNOTATE, to mark the lesion and to collect clinical labels. The sensitivity in referral decision for all lesions that required a referral for cancer management/surveillance was moderate to high depending on the type of lesion (64.3%-100%).

CONCLUSION

This is the first description of a database with clinically labelled oral lesions. This database could accelerate the improvement of AI algorithms that can promote the early detection of high-risk oral lesions.

摘要

目的

描述一个图像采集和标注平台的开发过程,该平台产生了一个多来源的国际口腔病变图像数据集,以促进自动化病变分类算法的发展。

材料与方法

我们开发了一个网络界面,托管在一个网络服务器上,以从国际合作伙伴那里收集口腔病变图像。此外,我们还开发了一个定制的标注工具,也是一个网络界面,用于对图像进行系统标注,以构建一个丰富的临床标注数据集。我们通过比较标注过程中的转诊决策和病变的临床诊断来评估敏感性。

结果

该图像库包含 2474 张口腔病变图像,包括口腔癌、口腔潜在恶性疾病和其他口腔病变,这些图像是通过 MeMoSA UPLOAD 收集的。800 张图像由 7 名口腔医学专家在 MeMoSA ANNOTATE 上进行标注,以标记病变并收集临床标签。根据病变类型,所有需要转诊进行癌症管理/监测的病变的转诊决策敏感性从中等到高(64.3%-100%)。

结论

这是第一个描述具有临床标注的口腔病变数据库的文章。该数据库可以加速人工智能算法的改进,从而促进高危口腔病变的早期检测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验