Suppr超能文献

使用高通量随机击穿模拟和机器学习预测聚合物复合材料的储能性能

Prediction of Energy Storage Performance in Polymer Composites Using High-Throughput Stochastic Breakdown Simulation and Machine Learning.

作者信息

Yue Dong, Feng Yu, Liu Xiao-Xu, Yin Jing-Hua, Zhang Wen-Chao, Guo Hai, Su Bo, Lei Qing-Quan

机构信息

School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, China.

Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, 150080, China.

出版信息

Adv Sci (Weinh). 2022 Jun;9(17):e2105773. doi: 10.1002/advs.202105773. Epub 2022 Apr 10.

Abstract

Polymer dielectric capacitors are widely utilized in pulse power devices owing to their high power density. Because of the low dielectric constants of pure polymers, inorganic fillers are needed to improve their properties. The size and dielectric properties of fillers will affect the dielectric breakdown of polymer-based composites. However, the effect of fillers on breakdown strength cannot be completely obtained through experiments alone. In this paper, three of the most important variables affecting the breakdown strength of polymer-based composites are considered: the filler dielectric constants, filler sizes, and filler contents. High-throughput stochastic breakdown simulation is performed on 504 groups of data, and the simulation results are used as the machine learning database to obtain the breakdown strength prediction of polymer-based composites. Combined with the classical dielectric prediction formula, the energy storage density prediction of polymer-based composites is obtained. The accuracy of the prediction is verified by the directional experiments, including dielectric constant and breakdown strength. This work provides insight into the design and fabrication of polymer-based composites with high energy density for capacitive energy storage applications.

摘要

聚合物介电电容器因其高功率密度而被广泛应用于脉冲功率装置中。由于纯聚合物的介电常数较低,需要无机填料来改善其性能。填料的尺寸和介电性能会影响聚合物基复合材料的介电击穿。然而,仅通过实验无法完全获得填料对击穿强度的影响。本文考虑了影响聚合物基复合材料击穿强度的三个最重要变量:填料介电常数、填料尺寸和填料含量。对504组数据进行了高通量随机击穿模拟,并将模拟结果用作机器学习数据库,以获得聚合物基复合材料的击穿强度预测。结合经典介电预测公式,得到了聚合物基复合材料的储能密度预测。通过包括介电常数和击穿强度在内的定向实验验证了预测的准确性。这项工作为用于电容式储能应用的高能量密度聚合物基复合材料的设计和制造提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee2/9189649/2136e256a8fb/ADVS-9-2105773-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验