Zhang Guoqiang, Li Qiong, Allahyarov Elshad, Li Yue, Zhu Lei
Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States.
Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany.
ACS Appl Mater Interfaces. 2021 Aug 18;13(32):37939-37960. doi: 10.1021/acsami.1c04991. Epub 2021 Aug 9.
With the modern development of power electrification, polymer nanocomposite dielectrics (or nanodielectrics) have attracted significant research attention. The idea is to combine the high dielectric constant of inorganic nanofillers and the high breakdown strength/low loss of a polymer matrix for higher energy density polymer film capacitors. Although impressively high energy density has been achieved at the laboratory scale, there is still a large gap from the eventual goal of polymer nanodielectric capacitors. In this review, we focus on essential material issues for two types of polymer nanodielectrics, polymer/conductive nanoparticle and polymer/ceramic nanoparticle composites. Various material design parameters, including dielectric constant, dielectric loss, breakdown strength, high temperature rating, and discharged energy density will be discussed from both fundamental science and high-voltage capacitor application points of view. The objective is to identify advantages and disadvantages of the polymer nanodielectric approach against other approaches utilizing neat dielectric polymers and ceramics. Given the state-of-the-art understanding, future research directions are outlined for the continued development of polymer nanodielectrics for electric energy storage applications.
随着电力电气化的现代发展,聚合物纳米复合电介质(或纳米电介质)已引起了广泛的研究关注。其理念是将无机纳米填料的高介电常数与聚合物基体的高击穿强度/低损耗相结合,以制造具有更高能量密度的聚合物薄膜电容器。尽管在实验室规模上已实现了令人印象深刻的高能量密度,但与聚合物纳米电介质电容器的最终目标仍存在较大差距。在本综述中,我们关注两种类型的聚合物纳米电介质,即聚合物/导电纳米颗粒和聚合物/陶瓷纳米颗粒复合材料的基本材料问题。将从基础科学和高压电容器应用的角度讨论各种材料设计参数,包括介电常数、介电损耗、击穿强度、高温额定值和放电能量密度。目的是确定聚合物纳米电介质方法相对于其他使用纯介电聚合物和陶瓷的方法的优缺点。基于当前的理解水平,概述了聚合物纳米电介质在电能存储应用方面持续发展的未来研究方向。