Suppr超能文献

使用分层结构成分模型对单核苷酸多态性和代谢物数据进行综合通路分析。

Integrative Pathway Analysis of SNP and Metabolite Data Using a Hierarchical Structural Component Model.

作者信息

Jung Taeyeong, Jung Youngae, Moon Min Kyong, Kwon Oran, Hwang Geum-Sook, Park Taesung

机构信息

Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea.

Korea Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, South Korea.

出版信息

Front Genet. 2022 Mar 24;13:814412. doi: 10.3389/fgene.2022.814412. eCollection 2022.

Abstract

Integrative multi-omics analysis has become a useful tool to understand molecular mechanisms and drug discovery for treatment. Especially, the couplings of genetics to metabolomics have been performed to identify the associations between SNP and metabolite. However, while the importance of integrative pathway analysis is increasing, there are few approaches to utilize pathway information to analyze phenotypes using SNP and metabolite. We propose an integrative pathway analysis of SNP and metabolite data using a hierarchical structural component model considering the structural relationships of SNPs, metabolites, pathways, and phenotypes. The proposed method utilizes genome-wide association studies on metabolites and constructs the genetic risk scores for metabolites referred to as genetic metabolomic scores. It is based on the hierarchical model using the genetic metabolomic scores and pathways. Furthermore, this method adopts a ridge penalty to consider the correlations between genetic metabolomic scores and between pathways. We apply our method to the SNP and metabolite data from the Korean population to identify pathways associated with type 2 diabetes (T2D). Through this application, we identified well-known pathways associated with T2D, demonstrating that this method adds biological insights into disease-related pathways using genetic predispositions of metabolites.

摘要

整合多组学分析已成为理解分子机制和进行治疗药物发现的有用工具。特别是,已开展遗传学与代谢组学的耦合研究以确定单核苷酸多态性(SNP)与代谢物之间的关联。然而,尽管整合通路分析的重要性日益增加,但利用通路信息通过SNP和代谢物分析表型的方法却很少。我们提出了一种使用层次结构成分模型对SNP和代谢物数据进行整合通路分析的方法,该模型考虑了SNP、代谢物、通路和表型之间的结构关系。所提出的方法利用了针对代谢物的全基因组关联研究,并构建了称为遗传代谢组学评分的代谢物遗传风险评分。它基于使用遗传代谢组学评分和通路的层次模型。此外,该方法采用岭罚函数来考虑遗传代谢组学评分之间以及通路之间的相关性。我们将我们的方法应用于韩国人群的SNP和代谢物数据,以识别与2型糖尿病(T2D)相关的通路。通过此应用,我们识别出了与T2D相关的知名通路,表明该方法利用代谢物的遗传易感性为疾病相关通路增添了生物学见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e3/8987531/78ae167c11c3/fgene-13-814412-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验