Suppr超能文献

IntLIM:基于代谢组学和基因表达数据的线性模型整合。

IntLIM: integration using linear models of metabolomics and gene expression data.

机构信息

Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA.

Biomedical Engineering Undegraduate Program, The Ohio State University, Columbus, OH, 43210, USA.

出版信息

BMC Bioinformatics. 2018 Mar 5;19(1):81. doi: 10.1186/s12859-018-2085-6.

Abstract

BACKGROUND

Integration of transcriptomic and metabolomic data improves functional interpretation of disease-related metabolomic phenotypes, and facilitates discovery of putative metabolite biomarkers and gene targets. For this reason, these data are increasingly collected in large (> 100 participants) cohorts, thereby driving a need for the development of user-friendly and open-source methods/tools for their integration. Of note, clinical/translational studies typically provide snapshot (e.g. one time point) gene and metabolite profiles and, oftentimes, most metabolites measured are not identified. Thus, in these types of studies, pathway/network approaches that take into account the complexity of transcript-metabolite relationships may neither be applicable nor readily uncover novel relationships. With this in mind, we propose a simple linear modeling approach to capture disease-(or other phenotype) specific gene-metabolite associations, with the assumption that co-regulation patterns reflect functionally related genes and metabolites.

RESULTS

The proposed linear model, metabolite ~ gene + phenotype + gene:phenotype, specifically evaluates whether gene-metabolite relationships differ by phenotype, by testing whether the relationship in one phenotype is significantly different from the relationship in another phenotype (via a statistical interaction gene:phenotype p-value). Statistical interaction p-values for all possible gene-metabolite pairs are computed and significant pairs are then clustered by the directionality of associations (e.g. strong positive association in one phenotype, strong negative association in another phenotype). We implemented our approach as an R package, IntLIM, which includes a user-friendly R Shiny web interface, thereby making the integrative analyses accessible to non-computational experts. We applied IntLIM to two previously published datasets, collected in the NCI-60 cancer cell lines and in human breast tumor and non-tumor tissue, for which transcriptomic and metabolomic data are available. We demonstrate that IntLIM captures relevant tumor-specific gene-metabolite associations involved in known cancer-related pathways, including glutamine metabolism. Using IntLIM, we also uncover biologically relevant novel relationships that could be further tested experimentally.

CONCLUSIONS

IntLIM provides a user-friendly, reproducible framework to integrate transcriptomic and metabolomic data and help interpret metabolomic data and uncover novel gene-metabolite relationships. The IntLIM R package is publicly available in GitHub ( https://github.com/mathelab/IntLIM ) and includes a user-friendly web application, vignettes, sample data and data/code to reproduce results.

摘要

背景

整合转录组学和代谢组学数据可以改善与疾病相关的代谢组学表型的功能解释,并有助于发现潜在的代谢物生物标志物和基因靶点。因此,这些数据越来越多地在大型(> 100 个参与者)队列中收集,从而需要开发用户友好和开源的方法/工具来进行整合。值得注意的是,临床/转化研究通常提供(例如一个时间点)基因和代谢物谱的快照,并且通常测量的大多数代谢物都没有被识别。因此,在这些类型的研究中,考虑到转录-代谢物关系复杂性的途径/网络方法可能既不适用,也不容易发现新的关系。考虑到这一点,我们提出了一种简单的线性建模方法来捕捉疾病(或其他表型)特有的基因-代谢物关联,假设共调节模式反映了功能相关的基因和代谢物。

结果

所提出的线性模型,代谢物~基因+表型+基因:表型,专门评估基因-代谢物关系是否因表型而异,通过测试一种表型中的关系是否与另一种表型中的关系显著不同(通过基因:表型 p 值的统计交互)。计算所有可能的基因-代谢物对的统计交互 p 值,然后根据关联的方向(例如,一种表型中强烈的正相关,另一种表型中强烈的负相关)对显著的对进行聚类。我们将我们的方法实现为一个 R 包,IntLIM,它包括一个用户友好的 R Shiny 网络界面,从而使非计算专家也能够进行集成分析。我们将 IntLIM 应用于两个先前发表的数据集,一个在 NCI-60 癌细胞系中收集,另一个在人类乳腺肿瘤和非肿瘤组织中收集,这些数据集中都有转录组学和代谢组学数据。我们证明 IntLIM 可以捕获与已知癌症相关途径(包括谷氨酰胺代谢)相关的肿瘤特异性基因-代谢物关联。使用 IntLIM,我们还发现了可能进一步通过实验测试的生物学相关的新关系。

结论

IntLIM 提供了一个用户友好、可重复的框架来整合转录组学和代谢组学数据,并帮助解释代谢组学数据和发现新的基因-代谢物关系。IntLIM R 包在 GitHub 上公开可用(https://github.com/mathelab/IntLIM),并包括一个用户友好的网络应用程序、简介、示例数据和重现结果的代码。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8c2/5838881/fe5f5068157f/12859_2018_2085_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验