Suppr超能文献

基于相似性的多特征采样方法预测药物副作用。

Similarity-Based Method with Multiple-Feature Sampling for Predicting Drug Side Effects.

机构信息

College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.

出版信息

Comput Math Methods Med. 2022 Apr 1;2022:9547317. doi: 10.1155/2022/9547317. eCollection 2022.

Abstract

Drugs can treat different diseases but also bring side effects. Undetected and unaccepted side effects for approved drugs can greatly harm the human body and bring huge risks for pharmaceutical companies. Traditional experimental methods used to determine the side effects have several drawbacks, such as low efficiency and high cost. One alternative to achieve this purpose is to design computational methods. Previous studies modeled a binary classification problem by pairing drugs and side effects; however, their classifiers can only extract one feature from each type of drug association. The present work proposed a novel multiple-feature sampling scheme that can extract several features from one type of drug association. Thirteen classification algorithms were employed to construct classifiers with features yielded by such scheme. Their performance was greatly improved compared with that of the classifiers that use the features yielded by the original scheme. Best performance was observed for the classifier based on random forest with MCC of 0.8661, AUROC of 0.969, and AUPR of 0.977. Finally, one key parameter in the multiple-feature sampling scheme was analyzed.

摘要

药物可以治疗不同的疾病,但也会带来副作用。已批准药物的未被发现和未被接受的副作用会对人体造成极大的伤害,并给制药公司带来巨大的风险。传统的用于确定副作用的实验方法有几个缺点,例如效率低和成本高。实现这一目的的一种替代方法是设计计算方法。以前的研究通过将药物和副作用配对来构建二分类问题的模型;然而,他们的分类器只能从每一种药物关联中提取一个特征。本研究提出了一种新的多特征抽样方案,该方案可以从一种药物关联中提取多个特征。使用这种方案产生的特征构建了十三种分类算法的分类器。与使用原始方案产生的特征的分类器相比,它们的性能得到了很大的提高。基于随机森林的分类器的性能最好,MCC 为 0.8661,AUROC 为 0.969,AUPR 为 0.977。最后,分析了多特征抽样方案中的一个关键参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c4c/8993545/9f35b86d4094/CMMM2022-9547317.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验