Suppr超能文献

使用机器学习方法鉴定结肠免疫细胞标记基因

Identification of Colon Immune Cell Marker Genes Using Machine Learning Methods.

作者信息

Yang Yong, Zhang Yuhang, Ren Jingxin, Feng Kaiyan, Li Zhandong, Huang Tao, Cai Yudong

机构信息

Qianwei Hospital of Jilin Province, Changchun 130012, China.

Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Life (Basel). 2023 Sep 7;13(9):1876. doi: 10.3390/life13091876.

Abstract

Immune cell infiltration that occurs at the site of colon tumors influences the course of cancer. Different immune cell compositions in the microenvironment lead to different immune responses and different therapeutic effects. This study analyzed single-cell RNA sequencing data in a normal colon with the aim of screening genetic markers of 25 candidate immune cell types and revealing quantitative differences between them. The dataset contains 25 classes of immune cells, 41,650 cells in total, and each cell is expressed by 22,164 genes at the expression level. They were fed into a machine learning-based stream. The five feature ranking algorithms (last absolute shrinkage and selection operator, light gradient boosting machine, Monte Carlo feature selection, minimum redundancy maximum relevance, and random forest) were first used to analyze the importance of gene features, yielding five feature lists. Then, incremental feature selection and two classification algorithms (decision tree and random forest) were combined to filter the most important genetic markers from each list. For different immune cell subtypes, their marker genes, such as KLRB1 in CD4 T cells, RPL30 in B cell IGA plasma cells, and JCHAIN in IgG producing B cells, were identified. They were confirmed to be differentially expressed in different immune cells and involved in immune processes. In addition, quantitative rules were summarized by using the decision tree algorithm to distinguish candidate immune cell types. These results provide a reference for exploring the cell composition of the colon cancer microenvironment and for clinical immunotherapy.

摘要

发生在结肠肿瘤部位的免疫细胞浸润会影响癌症的进程。微环境中不同的免疫细胞组成会导致不同的免疫反应和不同的治疗效果。本研究分析了正常结肠的单细胞RNA测序数据,旨在筛选25种候选免疫细胞类型的遗传标志物,并揭示它们之间的数量差异。该数据集包含25类免疫细胞,共41,650个细胞,每个细胞在表达水平上由22,164个基因表达。它们被输入到基于机器学习的流程中。首先使用五种特征排名算法(最小绝对收缩和选择算子、轻梯度提升机、蒙特卡罗特征选择、最小冗余最大相关性和随机森林)来分析基因特征的重要性,产生五个特征列表。然后,将增量特征选择与两种分类算法(决策树和随机森林)相结合,从每个列表中筛选出最重要的遗传标志物。对于不同的免疫细胞亚型,鉴定出了它们的标志物基因,如CD4 T细胞中的KLRB1、B细胞IGA浆细胞中的RPL30以及产生IgG的B细胞中的JCHAIN。证实它们在不同免疫细胞中差异表达,并参与免疫过程。此外,使用决策树算法总结了区分候选免疫细胞类型的定量规则。这些结果为探索结肠癌微环境的细胞组成和临床免疫治疗提供了参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2266/10532943/ec9f1ff52047/life-13-01876-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验