Suppr超能文献

通过使用机器学习方法分析来自多个组织的单细胞RNA测序数据,研究不同新冠疫苗接种策略的免疫反应。

Immune responses of different COVID-19 vaccination strategies by analyzing single-cell RNA sequencing data from multiple tissues using machine learning methods.

作者信息

Li Hao, Ma Qinglan, Ren Jingxin, Guo Wei, Feng Kaiyan, Li Zhandong, Huang Tao, Cai Yu-Dong

机构信息

College of Food Engineering, Jilin Engineering Normal University, Changchun, China.

School of Life Sciences, Shanghai University, Shanghai, China.

出版信息

Front Genet. 2023 Mar 17;14:1157305. doi: 10.3389/fgene.2023.1157305. eCollection 2023.

Abstract

Multiple types of COVID-19 vaccines have been shown to be highly effective in preventing SARS-CoV-2 infection and in reducing post-infection symptoms. Almost all of these vaccines induce systemic immune responses, but differences in immune responses induced by different vaccination regimens are evident. This study aimed to reveal the differences in immune gene expression levels of different target cells under different vaccine strategies after SARS-CoV-2 infection in hamsters. A machine learning based process was designed to analyze single-cell transcriptomic data of different cell types from the blood, lung, and nasal mucosa of hamsters infected with SARS-CoV-2, including B and T cells from the blood and nasal cavity, macrophages from the lung and nasal cavity, alveolar epithelial and lung endothelial cells. The cohort was divided into five groups: non-vaccinated (control), 2adenovirus (two doses of adenovirus vaccine), 2attenuated (two doses of attenuated virus vaccine), 2*mRNA (two doses of mRNA vaccine), and mRNA/attenuated (primed by mRNA vaccine, boosted by attenuated vaccine). All genes were ranked using five signature ranking methods (LASSO, LightGBM, Monte Carlo feature selection, mRMR, and permutation feature importance). Some key genes that contributed to the analysis of immune changes, such as , , in immune cells, and and in tissue cells, were screened. Afterward, the five feature sorting lists were fed into the feature incremental selection framework, which contained two classification algorithms (decision tree [DT] and random forest [RF]), to construct optimal classifiers and generate quantitative rules. Results showed that random forest classifiers could provide relative higher performance than decision tree classifiers, whereas the DT classifiers provided quantitative rules that indicated special gene expression levels under different vaccine strategies. These findings may help us to develop better protective vaccination programs and new vaccines.

摘要

多种类型的新冠疫苗已被证明在预防新冠病毒感染和减轻感染后症状方面非常有效。几乎所有这些疫苗都会引发全身免疫反应,但不同疫苗接种方案所引发的免疫反应存在明显差异。本研究旨在揭示仓鼠感染新冠病毒后,在不同疫苗策略下不同靶细胞的免疫基因表达水平差异。设计了一个基于机器学习的流程,以分析感染新冠病毒的仓鼠血液、肺和鼻粘膜中不同细胞类型的单细胞转录组数据,包括血液和鼻腔中的B细胞和T细胞、肺和鼻腔中的巨噬细胞、肺泡上皮细胞和肺内皮细胞。该队列分为五组:未接种疫苗(对照组)、2腺病毒(两剂腺病毒疫苗)、2减毒(两剂减毒病毒疫苗)、2*mRNA(两剂mRNA疫苗)和mRNA/减毒(先用mRNA疫苗 primed,再用减毒疫苗加强)。使用五种特征排序方法(LASSO、LightGBM、蒙特卡罗特征选择、mRMR和排列特征重要性)对所有基因进行排序。筛选出了一些有助于免疫变化分析的关键基因,如免疫细胞中的 、 、 ,以及组织细胞中的 和 。随后,将这五个特征排序列表输入到包含两种分类算法(决策树[DT]和随机森林[RF])的特征增量选择框架中,以构建最优分类器并生成定量规则。结果表明,随机森林分类器比决策树分类器能提供相对更高的性能,而DT分类器提供的定量规则表明了不同疫苗策略下特殊的基因表达水平。这些发现可能有助于我们制定更好的保护性疫苗接种方案和新型疫苗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8a7/10065150/6ee2e5b1a83f/fgene-14-1157305-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验