Yao Neng-Zhi, Wang Bin, Wang Hao, Wu Chen-Long, Shih Tien-Mo, Wang Xuesheng
School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China.
Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA.
Microsyst Nanoeng. 2024 Dec 12;10(1):188. doi: 10.1038/s41378-024-00824-z.
The possibility of freely manipulating flow in accordance with humans will remain indispensable for breakthroughs in fields such as microfluidics, nanoengineering, and biomedicines, as well as for realizing zero-drag hydrodynamics, which is essential for alleviating the global energy crisis. However, persistent challenges arise from the D'Alembert paradox and the unresolved Navier-Stokes solutions, known as the Millennium Problem. These obstacles also complicate the development of hydrodynamic zero-drag cloaks across diverse Reynolds numbers. Our research introduces a paradigm for such cloaks, relying exclusively on isotropic and homogeneous viscosity. Through experimental and numerical validations, our cloaks exhibit zero-drag properties, effectively resolving the D'Alembert paradox in viscous potential flows. Moreover, they possess the capability to activate or deactivate hydrodynamic concealment at will. Our analysis emphasizes the critical role of vorticity manipulation in realizing cloaking effects and drag-reduction technology. Therefore, controlling vorticity emerges as a pivotal aspect for future active hydrodynamic zero-drag cloak designs. In conclusion, our study challenges the prevailing belief in the impossibility of zero drag, offering valuable insights into invisibility characteristics in fluid mechanics with implications for microfluidics, biofluidics demanding the drug release or biomolecules transportation accurately and timely, and hypervelocity technologies.
对于微流体、纳米工程和生物医学等领域的突破,以及实现零阻力流体动力学(这对于缓解全球能源危机至关重要)而言,能够根据人类意愿自由操控流体流动的可能性将仍然不可或缺。然而,达朗贝尔悖论和尚未解决的纳维-斯托克斯方程(即千禧年问题)带来了持续的挑战。这些障碍也使得跨不同雷诺数的流体动力学零阻力隐身衣的发展变得复杂。我们的研究引入了一种仅依赖各向同性和均匀粘性的隐身衣范式。通过实验和数值验证,我们的隐身衣展现出零阻力特性,有效解决了粘性势流中的达朗贝尔悖论。此外,它们具备随意激活或停用流体动力学隐身功能的能力。我们的分析强调了涡度操控在实现隐身效果和减阻技术中的关键作用。因此,控制涡度成为未来有源流体动力学零阻力隐身衣设计的一个关键方面。总之,我们的研究挑战了零阻力不可能实现的普遍观念,为流体力学中的隐身特性提供了有价值的见解,对微流体、要求准确及时药物释放或生物分子运输的生物流体以及超高速技术都有影响。