Suppr超能文献

用于冠状病毒COVID-19疾病鉴别诊断的声学系统

Acoustery System for Differential Diagnosing of Coronavirus COVID-19 Disease.

作者信息

Mitrofanova Anastasia, Mikhaylov Dmitry, Shaznaev Ilman, Chumanskaia Vera, Saveliev Valeri

机构信息

Bauman Moscow State Technical University Moscow 105005 Russia.

Lebedev Physical InstituteRussian Academy of Sciences Moscow 119991 Russia.

出版信息

IEEE Open J Eng Med Biol. 2021 Nov 10;2:299-303. doi: 10.1109/OJEMB.2021.3127078. eCollection 2021.

Abstract

Because of the outbreak of coronavirus infection, healthcare systems are faced with the lack of medical professionals. We present a system for the differential diagnosis of coronavirus disease, based on deep learning techniques, which can be implemented in clinics. A recurrent network with a convolutional neural network as an encoder and an attention mechanism is used. A database of about 3000 records of coughing was collected. The data was collected through the Acoustery mobile application in hospitals in Russia, Belarus, and Kazakhstan from April 2020 to October 2020. The model classification accuracy reaches 85%. Values of precision and recall metrics are 78.5% and 73%. We reached satisfactory results in solving the problem. The proposed model is already being tested by doctors to understand the ways of improvement. Other architectures should be considered that use a larger training sample and all available patient information.

摘要

由于冠状病毒感染的爆发,医疗系统面临医疗专业人员短缺的问题。我们提出了一种基于深度学习技术的冠状病毒疾病鉴别诊断系统,该系统可在诊所中实施。使用了一个以卷积神经网络作为编码器和注意力机制的循环网络。收集了一个约3000条咳嗽记录的数据库。这些数据是在2020年4月至2020年10月期间通过俄罗斯、白俄罗斯和哈萨克斯坦医院的Acoustery移动应用程序收集的。模型分类准确率达到85%。精确率和召回率指标的值分别为78.5%和73%。我们在解决该问题上取得了令人满意的结果。所提出的模型已在接受医生测试,以了解改进方法。应该考虑使用更大训练样本和所有可用患者信息的其他架构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6ae/8940188/034e2c3a78f0/savel1-3127078.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验