Ramya Priya P, Dubey Satish Kumar, Goel Sanket
MEMS, Microfluidics and Nanoelectronics (MMNE) LabBirla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus Hyderabad 500078 India.
Department of Mechanical EngineeringBirla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus Hyderabad 500078 India.
IEEE Open J Eng Med Biol. 2024 Oct 9;6:133-139. doi: 10.1109/OJEMB.2024.3477315. eCollection 2025.
This study introduced a proof-of-concept prototype for isothermal recombinase polymerase amplification (RPA) with miniaturized photometric detection, enabling rapid P. aeruginosa detection. The researchers conducted the amplification process within a microchamber with a diameter of 10 mm, utilizing a standalone Thermostat driven thermal management setup. RPA, an amplification technique was employed, which required a lower operating temperature of 37 °C-40 °C to complete the reaction. The amplified amplicon was labeled with a fluorophore reporter, stimulated by an LED light source, and detected in real-time using a photodiode. The developed prototype successfully demonstrated the rapid detection of P. aeruginosa using the RPA assay. The process only required the utilization of 0.04 ng of working concentration of DNA. The entire process, from amplification to detection, could be completed in over 15 minutes. The platform showed enhanced sensitivity and specificity, providing a cost-effective and accurate solution for on-site detection/quantification of pathogens. The integration of isothermal RPA with the miniaturized photometric detection platform proved successful in achieving the goal of rapid and specific pathogen detection. This study proved the benefits of Isothermal Nucleic Acid Amplification Technology (INAAT), emphasizing its potential as an accessible, user-friendly point-of-care technology for resource-constrained institutions. The RPA-based prototype demonstrated capability without requiring costly laboratory equipment or expertise. The developed platform, when combined with Internet of Things (IoT) enabled cloud platform, also allowed remote monitoring of data. Overall, the methodology presented in this study offered a cost-effective, accurate, and convenient solution for on-site testing in resource-limited settings.
本研究介绍了一种用于等温重组酶聚合酶扩增(RPA)的概念验证原型,该原型采用小型化光度检测,能够快速检测铜绿假单胞菌。研究人员在直径为10毫米的微腔内进行扩增过程,利用独立恒温器驱动的热管理装置。采用了RPA这种扩增技术,其完成反应所需的操作温度较低,为37°C至40°C。扩增的扩增子用荧光团报告基因标记,由LED光源激发,并使用光电二极管进行实时检测。所开发的原型成功地证明了使用RPA检测法可快速检测铜绿假单胞菌。该过程仅需使用0.04纳克工作浓度的DNA。从扩增到检测的整个过程可在15分钟以上完成。该平台显示出更高的灵敏度和特异性,为病原体的现场检测/定量提供了一种经济高效且准确的解决方案。等温RPA与小型化光度检测平台的整合被证明成功实现了快速、特异性病原体检测的目标。本研究证明了等温核酸扩增技术(INAAT)的优势,强调了其作为资源有限机构可获取、用户友好的即时检测技术的潜力。基于RPA的原型展示了无需昂贵实验室设备或专业知识的能力。所开发的平台与物联网(IoT)支持的云平台相结合时,还允许对数据进行远程监测。总体而言,本研究中提出的方法为资源有限环境下的现场检测提供了一种经济高效、准确且便捷的解决方案。