Bent Brinnae, Henriquez Maria, Dunn Jessilyn
Department of Biomedical Engineering, Duke University Durham NC 27705 USA.
Department of Statistical Science, Duke University Durham NC 27705 USA.
IEEE Open J Eng Med Biol. 2021 Aug 18;2:263-266. doi: 10.1109/OJEMB.2021.3105816. eCollection 2021.
Continuous glucose monitoring (CGM) is commonly used in Type 1 diabetes management by clinicians and patients and in diabetes research to understand how factors of longitudinal glucose and glucose variability relate to disease onset and severity and the efficacy of interventions. CGM data presents unique bioinformatic challenges because the data is longitudinal, temporal, and there are infinite ways to summarize and use this data. There are over 25 metrics of glucose variability used clinically and in research, metrics are not standardized, and little validation exists across studies. The primary goal of this work is to present a software resource for systematic, reproducible, and comprehensive analysis of interstitial glucose and glycemic variability from continuous glucose monitor data. Comprehensive literature review informed the clinically-validated functions developed in this work. Software packages were developed and open-sourced through the Python Package Index (PyPi) and the Comprehensive R Archive Network (CRAN). cgmquantify is integrated into the Digital Biomarker Discovery Pipeline and MD2K Cerebral Cortex. Here we present an open-source software toolbox called cgmquantify, which contains 25 functions calculating 28 clinically validated metrics of glucose and glycemic variability, as well as tools for visualizing longitudinal CGM data. Detailed documentation facilitates modification of existing code by the community for customization of input data and visualizations. We have built systematic functions and documentation of metrics and visualizations into a software resource available in both the Python and R languages. This resource will enable digital biomarker development using continuous glucose monitors.
连续血糖监测(CGM)在1型糖尿病管理中被临床医生和患者广泛使用,同时也用于糖尿病研究,以了解纵向血糖和血糖变异性因素与疾病发生、严重程度以及干预效果之间的关系。CGM数据带来了独特的生物信息学挑战,因为数据具有纵向性、时效性,并且有无数种方式来总结和使用这些数据。临床和研究中使用的血糖变异性指标超过25种,这些指标未标准化,而且不同研究之间的验证很少。这项工作的主要目标是提供一种软件资源,用于对连续血糖监测数据中的组织间液葡萄糖和血糖变异性进行系统、可重复和全面的分析。全面的文献综述为这项工作中开发的经过临床验证的功能提供了依据。软件包通过Python软件包索引(PyPi)和综合R存档网络(CRAN)进行开发并开源。cgmquantify已集成到数字生物标志物发现管道和MD2K大脑皮层中。在这里,我们展示了一个名为cgmquantify的开源软件工具箱,它包含25个函数,用于计算28个经过临床验证的血糖和血糖变异性指标,以及用于可视化纵向CGM数据的工具。详细的文档便于社区修改现有代码,以定制输入数据和可视化。我们已经将系统的函数以及指标和可视化的文档构建到一个以Python和R语言提供的软件资源中。该资源将有助于利用连续血糖监测器开发数字生物标志物。