Suppr超能文献

开源自动化胰岛素输送系统的血糖变异性结果的大规模数据分析。

Large-Scale Data Analysis for Glucose Variability Outcomes with Open-Source Automated Insulin Delivery Systems.

机构信息

CeADAR-Ireland's Centre for Applied AI, University College Dublin, D04 V2N9 Dublin, Ireland.

OpenAPS, Seattle, WA 98101, USA.

出版信息

Nutrients. 2022 May 2;14(9):1906. doi: 10.3390/nu14091906.

Abstract

Open-source automated insulin delivery (AID) technologies use the latest continuous glucose monitors (CGM), insulin pumps, and algorithms to automate insulin delivery for effective diabetes management. Early community-wide adoption of open-source AID, such as OpenAPS, has motivated clinical and research communities to understand and evaluate glucose-related outcomes of such user-driven innovation. Initial OpenAPS studies include retrospective studies assessing high-level outcomes of average glucose levels and HbA1c, without in-depth analysis of glucose variability (GV). The OpenAPS Data Commons dataset, donated to by open-source AID users with insulin-requiring diabetes, is the largest freely available diabetes-related dataset with over 46,070 days' worth of data and over 10 million CGM data points, alongside insulin dosing and algorithmic decision data. This paper first reviews the development toward the latest open-source AID and the performance of clinically approved GV metrics. We evaluate the GV outcomes using large-scale data analytics for the = 122 version of the OpenAPS Data Commons. We describe the data cleaning processes, methods for measuring GV, and the results of data analysis based on individual self-reported demographics. Furthermore, we highlight the lessons learned from the GV outcomes and the analysis of a rich and complex diabetes dataset and additional research questions that emerged from this work to guide future research. This paper affirms previous studies' findings of the efficacy of open-source AID.

摘要

开源自动化胰岛素输送 (AID) 技术利用最新的连续血糖监测仪 (CGM)、胰岛素泵和算法,实现胰岛素输送的自动化,从而有效管理糖尿病。早期开源 AID(如 OpenAPS)在社区内的广泛应用,促使临床和研究界了解和评估这种用户驱动创新的与血糖相关的结果。最初的 OpenAPS 研究包括评估平均血糖水平和 HbA1c 等高级别结果的回顾性研究,而没有深入分析血糖变异性 (GV)。OpenAPS 数据共通体捐赠给有胰岛素需求的糖尿病患者,是最大的免费糖尿病相关数据集,拥有超过 46070 天的数据和超过 1000 万条 CGM 数据点,以及胰岛素剂量和算法决策数据。本文首先回顾了最新开源 AID 的发展情况以及临床批准的 GV 指标的性能。我们使用大规模数据分析了 OpenAPS 数据共通体的 = 122 版本的 GV 结果。我们描述了数据清理过程、测量 GV 的方法以及基于个体自我报告人口统计学数据的数据分析结果。此外,我们强调了从 GV 结果和丰富复杂的糖尿病数据集分析中吸取的经验教训,以及由此产生的指导未来研究的其他研究问题。本文证实了先前研究中关于开源 AID 疗效的发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f68/9101219/69cc6475ccdb/nutrients-14-01906-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验