Suppr超能文献

用于保留人脑模板中皮质细节的表面引导图像融合

Surface-Guided Image Fusion for Preserving Cortical Details in Human Brain Templates.

作者信息

Ahmad Sahar, Wu Ye, Yap Pew-Thian

机构信息

Department of Radiology and Biomedical Research Imaging Center (BRIC), The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

出版信息

Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12907:390-399. Epub 2021 Sep 21.

Abstract

Human brain templates are a basis for comparison of brain features across individuals. They should ideally capture an atomical details at both coarse and fine scales to facilitate comparison at varying granularity. Brain template construction typically involves spatial normalization and image fusion. While significant efforts have been dedicated to improving brain templates with sophisticated spatial normalization algorithms, image fusion is typically carried out using intensity-based averaging, causing blurring of anatomical structures. Here, we present an image fusion method that exploits cortical surfaces as guidance to help preserve details in brain templates. Our method encodes cortical boundary information given by a cortical surface mesh in a signed distance function (SDF) map. We use the SDF map to help determine localized contributions of the individual images, especially at cortical boundaries, in image fusion. Experimental results demonstrate that our method significantly improves the preservation of fine gyral and sulcal details, resulting in detailed brain templates with good surface-volume agreement.

摘要

人类大脑模板是跨个体比较大脑特征的基础。理想情况下,它们应在粗粒度和细粒度尺度上捕捉解剖学细节,以便于在不同粒度下进行比较。大脑模板构建通常涉及空间归一化和图像融合。虽然已经投入了大量精力使用复杂的空间归一化算法来改进大脑模板,但图像融合通常是基于强度平均进行的,这会导致解剖结构模糊。在这里,我们提出了一种图像融合方法,该方法利用皮质表面作为指导,以帮助保留大脑模板中的细节。我们的方法在符号距离函数(SDF)图中对由皮质表面网格给出的皮质边界信息进行编码。我们使用SDF图来帮助确定各个图像在图像融合中的局部贡献,特别是在皮质边界处。实验结果表明,我们的方法显著提高了对精细脑回和脑沟细节的保留,从而得到具有良好表面-体积一致性的详细大脑模板。

相似文献

3
Multi-contrast unbiased MRI atlas of a Parkinson's disease population.帕金森病人群的多对比度无偏 MRI 图谱。
Int J Comput Assist Radiol Surg. 2015 Mar;10(3):329-41. doi: 10.1007/s11548-014-1068-y. Epub 2014 May 20.
5
Construction of Spatiotemporal Infant Cortical Surface Functional Templates.时空婴儿皮质表面功能模板的构建。
Med Image Comput Comput Assist Interv. 2020;12267:238-248. doi: 10.1007/978-3-030-59728-3_24. Epub 2020 Sep 29.
7
Simultaneous Cortical Surface Labeling and Sulcal Curve Extraction.同步皮质表面标记和脑沟曲线提取
Proc SPIE Int Soc Opt Eng. 2012 Feb 4;8314. doi: 10.1117/12.910552. Epub 2012 Feb 23.
8
A cortical shape-adaptive approach to local gyrification index.皮质形态自适应方法局部脑回指数。
Med Image Anal. 2018 Aug;48:244-258. doi: 10.1016/j.media.2018.06.009. Epub 2018 Jun 28.
9
Diffeomorphic brain registration under exhaustive sulcal constraints.基于详尽脑沟约束的可变形脑配准。
IEEE Trans Med Imaging. 2011 Jun;30(6):1214-27. doi: 10.1109/TMI.2011.2108665. Epub 2011 Jan 28.

本文引用的文献

9
Regional growth and atlasing of the developing human brain.发育中人类大脑的区域生长与图谱绘制
Neuroimage. 2016 Jan 15;125:456-478. doi: 10.1016/j.neuroimage.2015.10.047. Epub 2015 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验