Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, USA.
Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, USA.
Neuroimage. 2020 Mar;208:116450. doi: 10.1016/j.neuroimage.2019.116450. Epub 2019 Dec 9.
As medical imaging enters its information era and presents rapidly increasing needs for big data analytics, robust pooling and harmonization of imaging data across diverse cohorts with varying acquisition protocols have become critical. We describe a comprehensive effort that merges and harmonizes a large-scale dataset of 10,477 structural brain MRI scans from participants without a known neurological or psychiatric disorder from 18 different studies that represent geographic diversity. We use this dataset and multi-atlas-based image processing methods to obtain a hierarchical partition of the brain from larger anatomical regions to individual cortical and deep structures and derive age trends of brain structure through the lifespan (3-96 years old). Critically, we present and validate a methodology for harmonizing this pooled dataset in the presence of nonlinear age trends. We provide a web-based visualization interface to generate and present the resulting age trends, enabling future studies of brain structure to compare their data with this reference of brain development and aging, and to examine deviations from ranges, potentially related to disease.
随着医学成像进入信息时代,对大数据分析的需求迅速增加,跨不同队列、具有不同采集协议的成像数据的强大汇集和协调变得至关重要。我们描述了一项综合工作,该工作合并和协调了来自 18 项不同研究的 10477 名无已知神经或精神疾病参与者的大规模结构脑 MRI 扫描数据集,这些参与者代表了地域多样性。我们使用这个数据集和基于多图谱的图像处理方法,从较大的解剖区域到单个皮质和深部结构,获得大脑的层次分区,并通过整个生命周期(3-96 岁)得出大脑结构的年龄趋势。至关重要的是,我们提出并验证了一种在存在非线性年龄趋势的情况下协调这个汇集数据集的方法。我们提供了一个基于网络的可视化界面来生成和呈现由此产生的年龄趋势,使未来的大脑结构研究能够将其数据与大脑发育和衰老的参考数据进行比较,并检查与疾病相关的范围偏差。