Suppr超能文献

一种用于细胞疗法蛋白质组分析的灵敏且可控的数据非依赖采集方法。

A Sensitive and Controlled Data-Independent Acquisition Method for Proteomic Analysis of Cell Therapies.

作者信息

Lombard-Banek Camille, Pohl Kerstin I, Kwee Edward J, Elliott John T, Schiel John E

机构信息

National Institute of Standards and Technology, Material and Measurements Laboratory, Gaithersburg, Maryland 20899, United States.

Institute for Bioscience and Bioengineering Research, Rockville, Maryland 20850, United States.

出版信息

J Proteome Res. 2022 May 6;21(5):1229-1239. doi: 10.1021/acs.jproteome.1c00887. Epub 2022 Apr 11.

Abstract

Mass spectrometry (MS)-based proteomic measurements are uniquely poised to impact the development of cell and gene therapies. With the adoption of rigorous instrumental performance qualifications (PQs), large-scale proteomics can move from a research to a manufacturing control tool. Especially suited, data-independent acquisition (DIA) approaches have distinctive qualities to extend multiattribute method (MAM) principles to characterize the proteome of cell therapies. Here, we describe the development of a DIA method for the sensitive identification and quantification of proteins on a Q-TOF instrument. Using the improved acquisition parameters, we defined a control strategy and highlighted some metrics to improve the reproducibility of SWATH acquisition-based proteomic measurements. Finally, we applied the method to analyze the proteome of Jurkat cells that here serves as a model for human T-cells. Raw and processed data were deposited in PRIDE (PXD029780).

摘要

基于质谱(MS)的蛋白质组学测量在细胞和基因治疗的发展中具有独特的影响力。随着严格的仪器性能鉴定(PQ)的采用,大规模蛋白质组学可以从研究工具转变为制造控制工具。数据非依赖型采集(DIA)方法特别适合,具有独特的特性,能够将多属性方法(MAM)原理扩展到细胞治疗蛋白质组的表征。在此,我们描述了一种用于在Q-TOF仪器上灵敏鉴定和定量蛋白质的DIA方法的开发。通过使用改进的采集参数,我们定义了一种控制策略,并强调了一些指标以提高基于SWATH采集的蛋白质组学测量的重现性。最后,我们应用该方法分析了作为人类T细胞模型的Jurkat细胞的蛋白质组。原始数据和处理后的数据已存入PRIDE(PXD029780)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e93/9087334/af97d5a9a7ed/pr1c00887_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验