School of Life Sciences, Arizona State Universitygrid.215654.1, Tempe, Arizona, USA.
Biodesign Institute, Arizona State Universitygrid.215654.1, Tempe, Arizona, USA.
Appl Environ Microbiol. 2022 May 10;88(9):e0243821. doi: 10.1128/aem.02438-21. Epub 2022 Apr 11.
Microbial communities mediate the transformation of organic matter within landfills into methane (CH). Yet their ecological role in CH production is rarely evaluated. To characterize the microbiome associated with this biotransformation, the overall community and methanogenic were surveyed in an arid landfill using leachate collected from distinctly aged landfill cells (i.e., younger, intermediate, and older). We hypothesized that distinct methanogenic niches exist within an arid landfill, driven by geochemical gradients that developed under extended and age-dependent waste biodegradation stages. Using 16S rRNA and gene amplicon sequencing, we identified putative methanogenic niches as follows. The order was the most abundant order in leachate from younger cells, where leachate temperature and propionate concentrations were measured at 41.8°C ± 1.7°C and 57.1 ± 10.7 mg L. In intermediate-aged cells, the family was identified as a putative specialist family under intermediate-temperature and -total dissolved solid (TDS) conditions, wherein samples had a higher alpha diversity index and near CH concentrations. In older-aged cells, accumulating metals and TDS supported , " Bathyarchaeota," and " Verstraetearchaeota" operational taxonomic units (OTUs). Consistent with the data, we assayed methanogenic activity across the age gradient through stable isotopic measurements of δC of CH and δC of CO. The majority (80%) of the samples' carbon fractionation was consistent with hydrogenotrophic methanogenesis. Together, we report age-dependent geochemical gradients detected through leachate in an arid landfill seemingly influencing CH production, niche partitioning, and methanogenic activity. Microbiome analysis is becoming common in select municipal and service ecosystems, including wastewater treatment and anaerobic digestion, but its potential as a microbial-status-informative tool to promote or mitigate CH production has not yet been evaluated in landfills. Methanogenesis mediated by is highly active in solid-waste microbiomes but is commonly neglected in studies employing next-generation sequencing techniques. Identifying methanogenic niches within a landfill offers detail into operations that positively or negatively impact the commercial production of methane known as biomethanation. We provide evidence that the geochemistry of leachate and its microbiome can be a variable accounting for ecosystem-level (coarse) variation of CH production, where we demonstrate through independent assessments of leachate and gas collection that the functional variability of an arid landfill is linked to the composition of methanogenic .
微生物群落介导垃圾填埋场中的有机物转化为甲烷(CH)。然而,它们在 CH 生产中的生态作用很少被评估。为了描述与这种生物转化相关的微生物组,我们使用从明显老化的垃圾填埋单元收集的渗滤液(即年轻、中等和年老)调查了干旱垃圾填埋场中的整体群落和产甲烷菌。我们假设,在干旱垃圾填埋场中存在独特的产甲烷小生境,这是由在扩展和依赖年龄的废物生物降解阶段下形成的地球化学梯度驱动的。使用 16S rRNA 和 基因扩增子测序,我们确定了如下假定的产甲烷小生境。在年轻细胞的渗滤液中,目 是最丰富的目,其中渗滤液温度和丙酸盐浓度分别为 41.8°C±1.7°C 和 57.1±10.7 mg/L。在中等年龄的细胞中,发现科 是在中温-总溶解固体(TDS)条件下的一个假定的专业科,其中样品的 alpha 多样性指数较高,接近 CH 浓度。在较老的细胞中,积累的金属和 TDS 支持科 、“Bathyarchaeota”和“Verstraetearchaeota”操作分类单位(OTU)。与 数据一致,我们通过稳定同位素测量 CH 的 δC 和 CO 的 δC 对年龄梯度进行了整个产甲烷活性的测定。大多数(80%)样品的碳分馏与氢营养型产甲烷作用一致。总的来说,我们报告了通过干旱垃圾填埋场渗滤液检测到的依赖年龄的地球化学梯度,这些梯度似乎影响 CH 生产、小生境划分和产甲烷活性。微生物组分析在选定的市政和服务生态系统中变得越来越普遍,包括废水处理和厌氧消化,但它作为促进或减轻 CH 生产的微生物状态信息工具的潜力尚未在垃圾填埋场中得到评估。在固体废物微生物组中,介导的产甲烷作用非常活跃,但在采用下一代测序技术的研究中通常被忽视。在垃圾填埋场内确定产甲烷小生境提供了有关积极或消极影响商业甲烷生产(称为生物甲烷化)的操作细节。我们提供的证据表明,渗滤液的地球化学及其微生物组可能是导致 CH 生产的生态系统水平(粗)变化的一个变量,我们通过对渗滤液和气体收集的独立评估证明了这一点,即干旱垃圾填埋场的功能变异性与产甲烷菌的组成有关。