Suppr超能文献

绘制微生物相互作用组图谱:微生物组网络推断的统计和实验方法。

Mapping the microbial interactome: Statistical and experimental approaches for microbiome network inference.

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.

出版信息

Exp Biol Med (Maywood). 2019 Apr;244(6):445-458. doi: 10.1177/1535370219836771. Epub 2019 Mar 16.

Abstract

This review provides a comprehensive description of experimental and statistical tools used for network analyses of the human gut microbiome. Understanding the system dynamics of microbial interactions may lead to the improvement of therapeutic approaches for managing microbiome-associated diseases. Microbiome network inference tools have been developed and applied to both cross-sectional and longitudinal experimental designs, as well as to multi-omic datasets, with the goal of untangling the complex web of microbe-host, microbe-environmental, and metabolism-mediated microbial interactions. The characterization of these interaction networks may lead to a better understanding of the systems dynamics of the human gut microbiome, augmenting our knowledge of the microbiome's role in human health, and guiding the optimization of effective, precise, and rational therapeutic strategies for managing microbiome-associated disease.

摘要

本文综述了用于人类肠道微生物组网络分析的实验和统计工具。了解微生物相互作用的系统动态可能有助于改进管理与微生物组相关疾病的治疗方法。微生物组网络推断工具已被开发并应用于横断面和纵向实验设计,以及多组学数据集,其目的是理清微生物-宿主、微生物-环境和代谢介导的微生物相互作用的复杂网络。这些相互作用网络的特征描述可能有助于更好地理解人类肠道微生物组的系统动态,增加我们对微生物组在人类健康中的作用的认识,并指导优化有效、精确和合理的治疗策略,以管理与微生物组相关的疾病。

相似文献

5
Mapping the ecological networks of microbial communities.绘制微生物群落的生态网络。
Nat Commun. 2017 Dec 11;8(1):2042. doi: 10.1038/s41467-017-02090-2.
6
Multi-omic approaches for host-microbiome data integration.基于组学的宿主-微生物组数据整合方法。
Gut Microbes. 2024 Jan-Dec;16(1):2297860. doi: 10.1080/19490976.2023.2297860. Epub 2024 Jan 2.
10
Microbiome systems biology advancements for natural well-being.微生物组系统生物学在自然健康方面的进展。
Sci Total Environ. 2022 Sep 10;838(Pt 2):155915. doi: 10.1016/j.scitotenv.2022.155915. Epub 2022 May 11.

引用本文的文献

5
Microbial biogeography of the eastern Yucatán carbonate aquifer.东尤卡坦碳酸盐含水层的微生物生物地理学。
Appl Environ Microbiol. 2023 Nov 29;89(11):e0168223. doi: 10.1128/aem.01682-23. Epub 2023 Nov 2.
8
Disentangling the Functional Role of Fungi in Cold Seep Sediment.解析真菌在冷泉沉积物中的功能作用
Microbiol Spectr. 2023 Mar 13;11(2):e0197822. doi: 10.1128/spectrum.01978-22.
10
Modeling spatial interaction networks of the gut microbiota.肠道微生物组的空间相互作用网络建模。
Gut Microbes. 2022 Jan-Dec;14(1):2106103. doi: 10.1080/19490976.2022.2106103.

本文引用的文献

3
Microbial communities as dynamical systems.微生物群落作为动力系统。
Curr Opin Microbiol. 2018 Aug;44:41-49. doi: 10.1016/j.mib.2018.07.004. Epub 2018 Jul 21.
8
MPLasso: Inferring microbial association networks using prior microbial knowledge.MPLasso:利用先前的微生物知识推断微生物关联网络。
PLoS Comput Biol. 2017 Dec 27;13(12):e1005915. doi: 10.1371/journal.pcbi.1005915. eCollection 2017 Dec.
9
Mapping the ecological networks of microbial communities.绘制微生物群落的生态网络。
Nat Commun. 2017 Dec 11;8(1):2042. doi: 10.1038/s41467-017-02090-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验