Bioinstrumentation and Clinical Engineering Research Group (GIBIC), Bioengineering Program, Universidad de Antioquia, Medellín, Colombia.
Neuropsychology and Behavior Group (GRUNECO), Medical School, Universidad de Antioquia, Medellín, Colombia.
J Alzheimers Dis. 2022;87(2):817-832. doi: 10.3233/JAD-210148.
The study of genetic variant carriers provides an opportunity to identify neurophysiological changes in preclinical stages. Electroencephalography (EEG) is a low-cost and minimally invasive technique which, together with machine learning, provide the possibility to construct systems that classify subjects that might develop Alzheimer's disease (AD).
The aim of this paper is to evaluate the capacity of the machine learning techniques to classify healthy Non-Carriers (NonCr) from Asymptomatic Carriers (ACr) of PSEN1-E280A variant for autosomal dominant Alzheimer's disease (ADAD), using spectral features from EEG channels and brain-related independent components (ICs) obtained using independent component analysis (ICA).
EEG was recorded in 27 ACr and 33 NonCr. Statistical significance analysis was applied to spectral information from channels and group ICA (gICA), standardized low-resolution tomography (sLORETA) analysis was applied over the IC as well. Strategies for feature selection and classification like Chi-square, mutual informationm and support vector machines (SVM) were evaluated over the dataset.
A test accuracy up to 83% was obtained by implementing a SVM with spectral features derived from gICA. The main findings are related to theta and beta rhythms, generated in the parietal and occipital regions, like the precuneus and superior parietal lobule.
Promising models for classification of preclinical AD due to PSEN-1-E280A variant can be trained using spectral features, and the importance of the beta band and precuneus region is highlighted in asymptomatic stages, opening up the possibility of its use as a screening methodology.
研究遗传变异携带者为识别临床前阶段的神经生理变化提供了机会。脑电图(EEG)是一种低成本、微创的技术,与机器学习相结合,为构建可对可能患有阿尔茨海默病(AD)的个体进行分类的系统提供了可能。
本文旨在评估机器学习技术对载脂蛋白 E280A 变异的无症状携带者(ACr)与非携带者(NonCr)进行分类的能力,使用 EEG 通道的频谱特征和独立成分分析(ICA)获得的与大脑相关的独立成分(ICs)。
对 27 名 ACr 和 33 名 NonCr 进行了 EEG 记录。对通道和组独立成分分析(gICA)的频谱信息进行了统计显著性分析,并对独立成分进行了标准化低分辨率断层成像(sLORETA)分析。对特征选择和分类策略(如卡方、互信息和支持向量机(SVM))进行了评估。
通过对 gICA 衍生的频谱特征实施 SVM,可获得高达 83%的测试准确性。主要发现与θ和β节律有关,这些节律产生于顶叶和枕叶区域,如楔前叶和顶下小叶。
可以使用频谱特征训练用于 PSEN-1-E280A 变异所致临床前 AD 分类的有前途的模型,β波段和楔前叶区域的重要性在无症状阶段得到强调,为其作为一种筛选方法的可能性开辟了道路。