Zhang Lifeng, Xu Lei, Nian Yao, Wang Weizhen, Han You, Luo Langli
Institute of Molecular Plus, Department of Chemistry, Tianjin University, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, China.
School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China.
ACS Nano. 2022 Apr 26;16(4):6898-6905. doi: 10.1021/acsnano.2c02250. Epub 2022 Apr 11.
Lithium lanthanum titanium oxide (LLTO) as a fast Li-ion conductor is a promising candidate for future all-solid-state Li batteries. Fundamental understanding of the microstructure of LLTO and its effect on the Li diffusion mechanism, especially across different length scales and interfaces, is a prerequisite to improving the material design and processing development of oxide-based solid electrolytes. Herein, through detailed structural analysis of LLTO ceramic pellets by aberration-corrected transmission electron microscopy, we discovered previously unreported intrinsic planar defects in LLTO single-crystal grains. These planar defects feature an antiphase boundary along specific crystal planes with a "rock-salt" structure enriched by Li within a few atomic layers. Corroborated by density-functional-theory-based calculations, we show an increased diffusion barrier across these planar defects inevitably lowers the bulk Li diffusivity of the oxide electrolyte.
锂镧钛氧化物(LLTO)作为一种快速锂离子导体,是未来全固态锂电池的一个有前途的候选材料。深入了解LLTO的微观结构及其对锂扩散机制的影响,特别是在不同长度尺度和界面上的影响,是改进氧化物基固体电解质的材料设计和工艺开发的先决条件。在此,通过利用像差校正透射电子显微镜对LLTO陶瓷颗粒进行详细的结构分析,我们在LLTO单晶颗粒中发现了以前未报道的本征平面缺陷。这些平面缺陷沿着特定晶面具有反相边界,在几个原子层内具有富含锂的“岩盐”结构。基于密度泛函理论的计算证实,我们发现穿过这些平面缺陷的扩散势垒增加不可避免地降低了氧化物电解质的整体锂扩散率。