Stankiewicz Natalia, Criado-Gonzalez Miryam, Olmedo-Martínez Jorge L, Matxinandiarena Eider, López-Aranguren Pedro, Bonilla Francisco, Accardo Grazia, Saurel Damien, Devaux Didier, Villaluenga Irune
POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country (UPV/EHU), Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain.
Basque Research and Technology Alliance, Parque Tecnológico de Alava, Center for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain.
ACS Appl Polym Mater. 2024 Apr 26;6(23):14124-14132. doi: 10.1021/acsapm.4c00473. eCollection 2024 Dec 13.
The translation of inorganic-polymer hybrid battery materials from laboratory-scale to industry-relevant battery manufacturing processes is difficult due to their complexity, scalability, and cost and the limited fundamental knowledge that is available. Herein, we introduce a unique and compelling approach for the preparation of hybrid solid electrolytes based on an synthesized halide electrolyte (LiInCl) in the presence of a non-conducting polymer (styrene-ethylene-butylene-styrene block copolymer). This innovative approach delivers flexible self-standing membranes with good ionic conductivity (0.7 × 10 S/cm at 30 °C) and low activation energy (0.25 eV). This study suggests that the total conductivity is dominated by the inorganic-polymer interfaces and the microstructure of the hybrids affects the energy barriers to ion transport. This work opens a promising sustainable and cost-efficient route that can be easily implemented in current battery manufacturing lines.
由于无机聚合物混合电池材料的复杂性、可扩展性、成本以及现有的基础知识有限,将其从实验室规模转化为与工业相关的电池制造工艺具有挑战性。在此,我们介绍一种独特且引人注目的方法,用于制备基于合成卤化物电解质(LiInCl)并在非导电聚合物(苯乙烯 - 乙烯 - 丁烯 - 苯乙烯嵌段共聚物)存在下的混合固体电解质。这种创新方法可提供具有良好离子电导率(30°C时为0.7×10 S/cm)和低活化能(0.25 eV)的柔性自立膜。该研究表明,总电导率由无机 - 聚合物界面主导,并且混合材料的微观结构会影响离子传输的能垒。这项工作开辟了一条有前景的可持续且经济高效的途径,可轻松应用于当前的电池生产线。