Suppr超能文献

原子尺度研究澄清了空间电荷层在锂离子传导固体电解质中的作用。

Atomic-scale study clarifying the role of space-charge layers in a Li-ion-conducting solid electrolyte.

机构信息

Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China.

CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.

出版信息

Nat Commun. 2023 Mar 24;14(1):1632. doi: 10.1038/s41467-023-37313-2.

Abstract

Space-charge layers are frequently believed responsible for the large resistance of different interfaces in all-solid-state Li batteries. However, such propositions are based on the presumed existence of a Li-deficient space-charge layer with insufficient charge carriers, instead of a comprehensive investigation on the atomic configuration and its ion transport behavior. Consequently, the real influence of space-charge layers remains elusive. Here, we clarify the role of space-charge layers in LiLaTiO, a prototype solid electrolyte with large grain-boundary resistance, through a combined experimental and computational study at the atomic scale. In contrast to previous speculations, we do not observe the Li-deficient space-charge layers commonly believed to result in large resistance. Instead, the actual space-charge layers are Li-excess; accommodating the additional Li at the 3c interstitials, such space-charge layers allow for rather efficient ion transport. With the space-charge layers excluded from the potential bottlenecks, we identify the Li-depleted grain-boundary cores as the major cause for the large grain-boundary resistance in LiLaTiO.

摘要

空间电荷层通常被认为是导致全固态锂电池中不同界面大电阻的原因。然而,这些观点是基于假定存在一个缺乏锂离子的空间电荷层,其载流子不足,而不是对原子结构及其离子输运行为进行全面的研究。因此,空间电荷层的实际影响仍然难以捉摸。在这里,我们通过在原子尺度上进行组合实验和计算研究,澄清了空间电荷层在具有大晶界电阻的 LiLaTiO 原型固体电解质中的作用。与之前的推测相反,我们没有观察到通常导致大电阻的锂离子缺乏空间电荷层。相反,实际的空间电荷层是锂离子过剩的;额外的锂离子占据 3c 间隙,这种空间电荷层允许相当有效的离子输运。由于空间电荷层不再是潜在的瓶颈,我们将耗尽锂离子的晶界核心确定为 LiLaTiO 中晶界大电阻的主要原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1371/10039002/24e875ef4a8c/41467_2023_37313_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验