Suppr超能文献

使用人工智能模型评估无腹筋钢纤维混凝土梁的抗剪能力

Evaluation of Shear Capacity of Steel Fiber Reinforced Concrete Beams without Stirrups Using Artificial Intelligence Models.

作者信息

Yu Yong, Zhao Xin-Yu, Xu Jin-Jun, Wang Shao-Chun, Xie Tian-Yu

机构信息

School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.

State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, China.

出版信息

Materials (Basel). 2022 Mar 24;15(7):2407. doi: 10.3390/ma15072407.

Abstract

The shear transfer mechanism of steel fiber reinforced concrete (SFRC) beams without stirrups is still not well understood. This is demonstrated herein by examining the accuracy of typical empirical formulas for 488 SFRC beam test records compiled from the literature. To steer clear of these cognitive limitations, this study turned to artificial intelligence (AI) models. A gray relational analysis (GRA) was first conducted to evaluate the importance of different parameters for the problem at hand. The outcomes indicate that the shear capacity depends heavily on the material properties of concrete, the amount of longitudinal reinforcement, the attributes of steel fibers, and the geometrical and loading characteristics of SFRC beams. After this, AI models, including back-propagation artificial neural network, random forest and multi-gene genetic programming, were developed to capture the shear strength of SFRC beams without stirrups. The findings unequivocally show that the AI models predict the shear strength more accurately than do the empirical formulas. A parametric analysis was performed using the established AI model to investigate the effects of the main influential factors (determined by GRA) on the shear capacity. Overall, this paper provides an accurate, instantaneous and meaningful approach for evaluating the shear capacity of SFRC beams containing no stirrups.

摘要

无腹筋钢纤维混凝土(SFRC)梁的剪力传递机制仍未得到充分理解。本文通过检验从文献中收集的488条SFRC梁试验记录的典型经验公式的准确性来证明这一点。为了避免这些认知局限,本研究转向人工智能(AI)模型。首先进行了灰色关联分析(GRA),以评估不同参数对当前问题的重要性。结果表明,抗剪承载力在很大程度上取决于混凝土的材料性能、纵向配筋量、钢纤维的属性以及SFRC梁的几何和加载特性。在此之后,开发了包括反向传播人工神经网络、随机森林和多基因遗传编程在内的AI模型,以获取无腹筋SFRC梁的抗剪强度。研究结果明确表明,AI模型比经验公式能更准确地预测抗剪强度。使用所建立的AI模型进行了参数分析,以研究主要影响因素(由GRA确定)对抗剪承载力的影响。总体而言,本文为评估无腹筋SFRC梁的抗剪承载力提供了一种准确、即时且有意义的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/060c/9254746/7146223993c2/materials-15-02407-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验