Suppr超能文献

用于模拟钢纤维混凝土抗压强度的稳健机器学习框架:数据库编译、预测分析与实证验证

Robust Machine Learning Framework for Modeling the Compressive Strength of SFRC: Database Compilation, Predictive Analysis, and Empirical Verification.

作者信息

Abbas Yassir M, Khan Mohammad Iqbal

机构信息

Department of Civil Engineering, College of Engineering, King Saud University, Riyadh 800-11421, Saudi Arabia.

出版信息

Materials (Basel). 2023 Nov 15;16(22):7178. doi: 10.3390/ma16227178.

Abstract

In recent years, the field of construction engineering has experienced a significant paradigm shift, embracing the integration of machine learning (ML) methodologies, with a particular emphasis on forecasting the characteristics of steel-fiber-reinforced concrete (SFRC). Despite the theoretical sophistication of existing models, persistent challenges remain-their opacity, lack of transparency, and real-world relevance for practitioners. To address this gap and advance our current understanding, this study employs the extra gradient (XG) boosting algorithm, crafting a comprehensive approach. Grounded in a meticulously curated database drawn from 43 seminal publications, encompassing 420 distinct records, this research focuses predominantly on three primary fiber types: crimped, hooked, and mil-cut. Complemented by hands-on experimentation involving 20 diverse SFRC mixtures, this empirical campaign is further illuminated through the strategic use of partial dependence plots (PDPs), revealing intricate relationships between input parameters and consequent compressive strength. A pivotal revelation of this research lies in the identification of optimal SFRC formulations, offering tangible insights for real-world applications. The developed ML model stands out not only for its sophistication but also its tangible accuracy, evidenced by exemplary performance against independent datasets, boasting a commendable mean target-prediction ratio of 99%. To bridge the theory-practice gap, we introduce a user-friendly digital interface, thoroughly designed to guide professionals in optimizing and accurately predicting the compressive strength of SFRC. This research thus contributes to the construction and civil engineering sectors by enhancing predictive capabilities and refining mix designs, fostering innovation, and addressing the evolving needs of the industry.

摘要

近年来,建筑工程领域经历了重大的范式转变,采用了机器学习(ML)方法,尤其侧重于预测钢纤维混凝土(SFRC)的特性。尽管现有模型在理论上很复杂,但仍然存在持续的挑战——它们不透明、缺乏透明度以及对从业者缺乏现实世界的相关性。为了弥补这一差距并推进我们目前的理解,本研究采用了额外梯度(XG)提升算法,制定了一种全面的方法。基于从43篇重要出版物中精心策划的数据库,涵盖420条不同记录,本研究主要关注三种主要纤维类型:卷曲型、钩型和铣削型。通过涉及20种不同SFRC混合物的实际实验进行补充,通过部分依赖图(PDP)的战略使用进一步阐明了这一实证活动,揭示了输入参数与抗压强度之间的复杂关系。本研究的一个关键发现在于确定了最佳的SFRC配方,为实际应用提供了切实的见解。所开发的ML模型不仅因其复杂性而脱颖而出,而且因其切实的准确性而引人注目,通过对独立数据集的出色性能证明,其平均目标预测率达到了值得称赞的99%。为了弥合理论与实践之间的差距,我们引入了一个用户友好的数字界面,经过精心设计,以指导专业人员优化并准确预测SFRC的抗压强度。因此,本研究通过增强预测能力和完善配合比设计,促进创新并满足行业不断变化的需求,为建筑和土木工程领域做出了贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验