Suppr超能文献

网络流量预测纳入智能网络的先验知识。

Network Traffic Prediction Incorporating Prior Knowledge for an Intelligent Network.

机构信息

School of Electronics and Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.

School of Automation, Nanjing University of Science and Technology, Nanjing 210044, China.

出版信息

Sensors (Basel). 2022 Mar 30;22(7):2674. doi: 10.3390/s22072674.

Abstract

Network traffic prediction is an important tool for the management and control of IoT, and timely and accurate traffic prediction models play a crucial role in improving the IoT service quality. The degree of burstiness in intelligent network traffic is high, which creates problems for prediction. To address the problem faced by traditional statistical models, which cannot effectively extract traffic features when dealing with inadequate sample data, in addition to the poor interpretability of deep models, this paper proposes a prediction model (fusion prior knowledge network) that incorporates prior knowledge into the neural network training process. The model takes the self-similarity of network traffic as a priori knowledge, incorporates it into the gating mechanism of the long short-term memory neural network, and combines a one-dimensional convolutional neural network with an attention mechanism to extract the temporal features of the traffic sequence. The experiments show that the model can better recover the characteristics of the original data. Compared with the traditional prediction model, the proposed model can better describe the trend of network traffic. In addition, the model produces an interpretable prediction result with an absolute correction factor of 76.4%, which is at least 10% better than the traditional statistical model.

摘要

网络流量预测是物联网管理和控制的重要工具,及时准确的流量预测模型对于提高物联网服务质量起着至关重要的作用。智能网络流量的突发程度较高,这给预测带来了问题。为了解决传统统计模型在处理样本数据不足时无法有效提取流量特征的问题,除了深度模型的可解释性较差之外,本文提出了一种预测模型(融合先验知识网络),该模型将先验知识纳入神经网络训练过程。该模型将网络流量的自相似性作为先验知识,将其纳入长短时记忆神经网络的门控机制中,并结合一维卷积神经网络和注意力机制来提取流量序列的时间特征。实验表明,该模型可以更好地恢复原始数据的特征。与传统的预测模型相比,所提出的模型可以更好地描述网络流量的趋势。此外,该模型产生了一个可解释的预测结果,绝对校正因子为 76.4%,至少比传统的统计模型好 10%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aa0/9003571/fa46eee6d63c/sensors-22-02674-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验