Suppr超能文献

基于无人机多光谱图像的甘蔗氮浓度和灌溉水平预测。

Sugarcane Nitrogen Concentration and Irrigation Level Prediction Based on UAV Multispectral Imagery.

机构信息

Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China.

School of Electrical Engineering, Guangxi University, Nanning 530004, China.

出版信息

Sensors (Basel). 2022 Apr 1;22(7):2711. doi: 10.3390/s22072711.

Abstract

Sugarcane is the main industrial crop for sugar production, and its growth status is closely related to fertilizer, water, and light input. Unmanned aerial vehicle (UAV)-based multispectral imagery is widely used for high-throughput phenotyping, since it can rapidly predict crop vigor at field scale. This study focused on the potential of drone multispectral images in predicting canopy nitrogen concentration (CNC) and irrigation levels for sugarcane. An experiment was carried out in a sugarcane field with three irrigation levels and five fertilizer levels. Multispectral images at an altitude of 40 m were acquired during the elongating stage. Partial least square (PLS), backpropagation neural network (BPNN), and extreme learning machine (ELM) were adopted to establish CNC prediction models based on various combinations of band reflectance and vegetation indices. The simple ratio pigment index (SRPI), normalized pigment chlorophyll index (NPCI), and normalized green-blue difference index (NGBDI) were selected as model inputs due to their higher grey relational degree with the CNC and lower correlation between one another. The PLS model based on the five-band reflectance and the three vegetation indices achieved the best accuracy ( = 0.79, = 0.11). Support vector machine (SVM) and BPNN were then used to classify the irrigation levels based on five spectral features which had high correlations with irrigation levels. SVM reached a higher accuracy of 80.6%. The results of this study demonstrated that high resolution multispectral images could provide effective information for CNC prediction and water irrigation level recognition for sugarcane crop.

摘要

甘蔗是制糖的主要工业作物,其生长状况与肥料、水分和光照投入密切相关。基于无人机的多光谱图像广泛应用于高通量表型分析,因为它可以快速预测田间作物活力。本研究重点研究了无人机多光谱图像在预测甘蔗冠层氮浓度(CNC)和灌溉水平方面的潜力。在一个具有三个灌溉水平和五个肥料水平的甘蔗田中进行了实验。在伸长阶段,在 40 米的高度获取多光谱图像。采用偏最小二乘(PLS)、反向传播神经网络(BPNN)和极限学习机(ELM),基于不同波段反射率和植被指数的组合,建立了 CNC 预测模型。由于与 CNC 的灰色关联度较高,且相互之间的相关性较低,因此选择简单比值色素指数(SRPI)、归一化色素叶绿素指数(NPCI)和归一化绿蓝差异指数(NGBDI)作为模型输入。基于五波段反射率和三个植被指数的 PLS 模型达到了最高的精度( = 0.79, = 0.11)。然后,基于与灌溉水平高度相关的五个光谱特征,使用支持向量机(SVM)和 BPNN 对灌溉水平进行分类。SVM 达到了 80.6%的更高精度。本研究结果表明,高分辨率多光谱图像可为甘蔗 CNC 预测和水分灌溉水平识别提供有效信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ec5/9003411/e56075c05038/sensors-22-02711-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验