Suppr超能文献

关于用于区块链共识的量子算法的稳健性

On the Robustness of Quantum Algorithms for Blockchain Consensus.

作者信息

Ullah Muhammad Asad, Setiawan Jason William, Ur Rehman Junaid, Shin Hyundong

机构信息

Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea.

出版信息

Sensors (Basel). 2022 Apr 1;22(7):2716. doi: 10.3390/s22072716.

Abstract

Blockchain has revolutionized many fields, such as distributed sensor networks, finance, and cryptocurrency. Consensus between distributed network nodes is at the core of such blockchain technologies. The three primary performance measures for any consensus algorithm are scalability, security, and decentralization. This paper evaluates the usefulness and practicality of quantum consensus algorithms for blockchain-enhanced sensor, and computing networks and evaluates them against the aforementioned performance measures. In particular, we investigate their noise robustness against quantum decoherence in quantum processors and over fiber-optic channels. We observe that the quantum noise generally increases the error rate in the list distribution. However, the effect is variable on different quantum consensus schemes. For example, the entanglement-free scheme is more affected than entanglement-based schemes for the local noise cases, while in the case of noisy optical fiber links, the effect is prominent on all quantum consensus schemes. We infer that the current quantum protocols with noisy intermediate-scale quantum devices and noisy quantum communication can only be employed for modular units in intraenterprise-level blockchain, such as Zilliqa, for sensor, and computing networks.

摘要

区块链已经彻底改变了许多领域,如分布式传感器网络、金融和加密货币。分布式网络节点之间的共识是此类区块链技术的核心。任何共识算法的三个主要性能指标是可扩展性、安全性和去中心化。本文评估了量子共识算法在区块链增强型传感器和计算网络中的实用性和可行性,并根据上述性能指标对其进行评估。特别是,我们研究了它们在量子处理器和光纤通道中对量子退相干的噪声鲁棒性。我们观察到,量子噪声通常会增加列表分布中的错误率。然而,这种影响在不同的量子共识方案中是可变的。例如,在局部噪声情况下,无纠缠方案比基于纠缠的方案受到的影响更大,而在有噪声的光纤链路情况下,所有量子共识方案都会受到显著影响。我们推断,当前带有噪声的中尺度量子设备和噪声量子通信的量子协议仅可用于企业级区块链中的模块化单元,如用于传感器和计算网络的Zilliqa。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e58/9002366/577de49fe512/sensors-22-02716-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验