Suppr超能文献

区块链网络中的量子抗性。

Quantum-resistance in blockchain networks.

机构信息

IDB-Inter-American Development Bank, 1300 New York Ave, Washington, DC, USA.

LACChain-Global Alliance for the Development of the Blockchain Ecosystem in LAC, Washington, DC, USA.

出版信息

Sci Rep. 2023 Apr 6;13(1):5664. doi: 10.1038/s41598-023-32701-6.

Abstract

The advent of quantum computing threatens blockchain protocols and networks because they utilize non-quantum resistant cryptographic algorithms. When quantum computers become robust enough to run Shor's algorithm on a large scale, the most used asymmetric algorithms, utilized for digital signatures and message encryption, such as RSA, (EC)DSA, and (EC)DH, will be no longer secure. Quantum computers will be able to break them within a short period of time. Similarly, Grover's algorithm concedes a quadratic advantage for mining blocks in certain consensus protocols such as proof of work. Today, there are hundreds of billions of dollars denominated in cryptocurrencies and other digital assets that rely on blockchain ledgers as well as thousands of blockchain-based applications storing value in blockchain networks. Cryptocurrencies and blockchain-based applications require solutions that guarantee quantum resistance in order to preserve the integrity of data and assets in these public and immutable ledgers. The quantum threat and some potential solutions are well understood and presented in the literature. However, most proposals are theoretical, require large QKD networks, or propose new quantum-resistant blockchain networks to be built from scratch. Our work, which is presented in this paper, is pioneer in proposing an end-to-end framework for post-quantum blockchain networks that can be applied to existing blockchain to achieve quantum-resistance. We have developed an open-source implementation in an Ethereum-based (i.e., EVM compatible) network that can be extended to other existing blockchains. For the implementation we have (i) used quantum entropy to generate post-quantum key pairs, (ii) established post-quantum TLS connections and X.509 certificates to secure the exchange of information between blockchain nodes over the internet without needing a large QKD network, (iii) introduced a post-quantum second signature in transactions using Falcon-512 post-quantum keys, and (iv) developed the first on-chain verification of post-quantum signatures using three different mechanisms that are compared and analyzed: Solidity smart-contracts run by the validators for each transaction, modified EVM Opcode, and precompiled smart contracts.

摘要

量子计算的出现威胁到区块链协议和网络,因为它们使用的是非抗量子加密算法。当量子计算机足够强大,可以在大规模上运行 Shor 算法时,最常用的非对称算法,用于数字签名和消息加密,如 RSA、(EC)DSA 和 (EC)DH,将不再安全。量子计算机将能够在短时间内破解它们。同样,Grover 算法在某些共识协议中,如工作量证明,为挖掘区块提供了二次优势。如今,数以千亿计的美元计价的加密货币和其他数字资产依赖于区块链账本,以及数以千计的基于区块链的应用程序在区块链网络中存储价值。加密货币和基于区块链的应用程序需要保证量子抗性的解决方案,以维护这些公共和不可变账本中数据和资产的完整性。量子威胁及其一些潜在的解决方案在文献中已经得到很好的理解和阐述。然而,大多数提案都是理论性的,需要大型 QKD 网络,或者提议从头开始构建新的抗量子区块链网络。我们在本文中提出的工作是先驱性的,它为后量子区块链网络提出了一个端到端框架,可以应用于现有区块链以实现量子抗性。我们已经在基于以太坊的(即,与 EVM 兼容)网络中开发了一个开源实现,可以扩展到其他现有区块链。对于实现,我们 (i) 使用量子熵生成后量子密钥对,(ii) 建立后量子 TLS 连接和 X.509 证书,以在互联网上安全地交换区块链节点之间的信息,而无需大型 QKD 网络,(iii) 在交易中使用 Falcon-512 后量子密钥引入后量子二次签名,以及 (iv) 使用三种不同的机制开发了第一个链上后量子签名验证:每个交易的验证器运行的 Solidity 智能合约、修改后的 EVM 操作码和预编译智能合约。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/989a/10079930/f0d3741d2b0c/41598_2023_32701_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验