Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
Molecules. 2022 Mar 28;27(7):2197. doi: 10.3390/molecules27072197.
The encapsulation of proteins into core-shell structures is a widely utilised strategy for controlling protein stability, delivery and release. Despite the recognised utility of these microstructures, however, core-shell fabrication routes are often too costly or poorly scalable to allow for industrial translation. Furthermore, many scalable routes rely upon emulsion-techniques implicating denaturing or environmentally harmful organic solvents. Herein, we investigate core-shell protein encapsulation through single-feed, aqueous spray drying: a cheap, industrially ubiquitous particle-formation technology in the absence of organic solvents. We show that an excipient's preference for the surface of the spray dried particle is well-predicted by its hydrodynamic diameter (Dh) under relevant feed buffer conditions (pH and ionic strength) and that the predictive power of Dh is improved when measured at the spray dryer outlet temperature compared to room temperature (R2 = 0.64 vs. 0.59). Lastly, we leverage these findings to propose an adaptable design framework for fabricating core-shell protein encapsulates by single-feed aqueous spray drying.
将蛋白质封装到核壳结构中是一种广泛应用的控制蛋白质稳定性、输送和释放的策略。然而,尽管这些微结构具有公认的实用性,但核壳制造路线通常过于昂贵或难以扩展,无法实现工业转化。此外,许多可扩展的路线依赖于乳液技术,涉及变性或对环境有害的有机溶剂。在此,我们通过单进料、水相喷雾干燥研究了核壳蛋白质包封:这是一种在没有有机溶剂的情况下廉价且在工业中普遍存在的颗粒形成技术。我们表明,在相关进料缓冲条件(pH 值和离子强度)下,赋形剂对喷雾干燥颗粒表面的偏好可以很好地由其水动力学直径(Dh)预测,并且当在喷雾干燥器出口温度下测量时,Dh 的预测能力比在室温下提高(R2 = 0.64 对 0.59)。最后,我们利用这些发现提出了一种适应性设计框架,通过单进料水相喷雾干燥来制备核壳蛋白质包封物。