Suppr超能文献

基于地理信息系统分析和病毒载量的墨西哥城市地区新冠病毒传播风险模型

SARS-CoV-2 Transmission Risk Model in an Urban Area of Mexico, Based on GIS Analysis and Viral Load.

作者信息

Barajas-Carrillo Victor Wagner, Covantes-Rosales Carlos Eduardo, Zambrano-Soria Mercedes, Castillo-Pacheco Lucia Amapola, Girón-Pérez Daniel Alberto, Mercado-Salgado Ulises, Ojeda-Durán Ansonny Jhovanny, Vázquez-Pulido Erica Yolanda, Girón-Pérez Manuel Iván

机构信息

Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA) Unidad Nayarit, Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico.

出版信息

Int J Environ Res Public Health. 2022 Mar 24;19(7):3840. doi: 10.3390/ijerph19073840.

Abstract

The COVID-19 pandemic highlighted health systems vulnerabilities, as well as thoughtlessness by governments and society. Due to the nature of this contingency, the use of geographic information systems (GIS) is essential to understand the SARS-CoV-2 distribution dynamics within a defined geographic area. This work was performed in Tepic, a medium-sized city in Mexico. The residence of 834 COVID-19 infected individuals was georeferenced and categorized by viral load (Ct). The analysis took place during the maximum contagion of the first four waves of COVID-19 in Mexico, analyzing 158, 254, 143, and 279 cases in each wave respectively. Then heatmaps were built and categorized into five areas ranging from very low to very high risk of contagion, finding that the second wave exhibited a greater number of cases with a high viral load. Additionally, a spatial analysis was performed to measure urban areas with a higher risk of contagion, during this wave this area had 19,203.08 km (36.11% of the city). Therefore, a kernel density spatial model integrated by meaningful variables such as the number of infected subjects, viral load, and place of residence in cities, to establish geographic zones with different degrees of infection risk, could be useful for decision-making in future epidemic events.

摘要

新冠疫情凸显了卫生系统的脆弱性,以及政府和社会的漠不关心。由于这种突发事件的性质,使用地理信息系统(GIS)对于了解严重急性呼吸综合征冠状病毒2(SARS-CoV-2)在特定地理区域内的传播动态至关重要。这项工作在墨西哥的中型城市特皮克进行。对834名新冠病毒感染者的居住地进行了地理定位,并按病毒载量(Ct值)进行了分类。该分析在墨西哥新冠疫情前四波感染高峰期进行,每一波分别分析了158例、254例、143例和279例病例。然后绘制了热图,并将其分为从极低到极高感染风险的五个区域,发现第二波出现了更多病毒载量高的病例。此外,还进行了空间分析,以测量感染风险较高的城市区域,在此期间,该区域面积为19203.08平方公里(占该市的36.11%)。因此,一个由感染对象数量、病毒载量和城市居住地等有意义变量整合而成的核密度空间模型,用于建立不同感染风险程度的地理区域,可能有助于未来疫情事件中的决策制定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f85/8997569/f3c7e1b63a41/ijerph-19-03840-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验