文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

甘蓝型油菜中与亚油酸合成相关的 OPR 基因的克隆与功能验证。

Clone and Function Verification of the OPR gene in Brassica napus Related to Linoleic Acid Synthesis.

机构信息

College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China.

Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China.

出版信息

BMC Plant Biol. 2022 Apr 12;22(1):192. doi: 10.1186/s12870-022-03549-1.


DOI:10.1186/s12870-022-03549-1
PMID:35410118
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9003975/
Abstract

BACKGROUND: Fatty acid composition and content affect rapeseed oil quality. Fatty acid synthesis-related genes in rapeseed have been studied globally by researchers. Nevertheless, rapeseed oil is mainly composed of seven different fatty acids (FA), and each fatty acid was regulated by different genes. Furthermore, different FA affect each other, which needs continuous and in-depth research to obtain more clear results in Brassica napus. RESULTS: In this paper, broad-scale miRNA expression profiles were constructed and 21 differentially expressed miRNAs were detected. GO enrichment analysis showed that most up-regulated proteins were involved in transcription factor activity and catalytic activity. KEGG pathway enrichment analysis indicated that 20 pathways involving 36 target genes were enriched, of which the bna00592 pathway may be involved in fatty acid metabolism. The results were verified using a quantitative real-time PCR (RT-qPCR) analysis, we found that the target gene of bna-miR156b > c > g was the OPR (12-oxo-phytodienoic acid reductase). Four copies of OPR gene were found, and the over-expression vectors (pCAMBIA1300-35 s-OPR and pCAMBIA1300-RNAi-OPR) were constructed to verify their functions. In T and T generation, the content of linoleic acid (LA) increased significantly in OE but deceased in OPRi. CONCLUSIONS: This is the first study to provide four copies of the OPR gene that regulates LA metabolism, can be used for the molecular mechanism of LA and optimizing fatty acid profiles in oilseed for breeding programs.

摘要

背景:脂肪酸组成和含量影响菜籽油的质量。全球研究人员研究了油菜中与脂肪酸合成相关的基因。然而,菜籽油主要由七种不同的脂肪酸(FA)组成,每种脂肪酸都由不同的基因调控。此外,不同的 FA 相互影响,需要不断深入研究,以在甘蓝型油菜中获得更清晰的结果。

结果:在本研究中,构建了广泛的 miRNA 表达谱,检测到 21 个差异表达的 miRNA。GO 富集分析表明,大多数上调蛋白参与转录因子活性和催化活性。KEGG 通路富集分析表明,涉及 36 个靶基因的 20 个通路富集,其中 bna00592 通路可能参与脂肪酸代谢。使用定量实时 PCR(RT-qPCR)分析进行了验证,发现 bna-miR156b>c>g 的靶基因是 OPR(12-氧代-植二烯酸还原酶)。发现有四个 OPR 基因拷贝,构建了过表达载体(pCAMBIA1300-35s-OPR 和 pCAMBIA1300-RNAi-OPR)来验证其功能。在 T 和 T 代中,OE 中亚油酸(LA)的含量显著增加,而 OPRi 中 LA 的含量则减少。

结论:这是首次研究提供了调节 LA 代谢的四个 OPR 基因拷贝,可用于 LA 及优化油籽脂肪酸图谱的分子机制,以用于育种计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b7b/9003975/eaccb459f579/12870_2022_3549_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b7b/9003975/49431e7fc724/12870_2022_3549_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b7b/9003975/20f3adf71b07/12870_2022_3549_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b7b/9003975/74db3c1a1176/12870_2022_3549_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b7b/9003975/23eda564715b/12870_2022_3549_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b7b/9003975/d7963f7252a9/12870_2022_3549_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b7b/9003975/eaccb459f579/12870_2022_3549_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b7b/9003975/49431e7fc724/12870_2022_3549_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b7b/9003975/20f3adf71b07/12870_2022_3549_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b7b/9003975/74db3c1a1176/12870_2022_3549_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b7b/9003975/23eda564715b/12870_2022_3549_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b7b/9003975/d7963f7252a9/12870_2022_3549_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b7b/9003975/eaccb459f579/12870_2022_3549_Fig6_HTML.jpg

相似文献

[1]
Clone and Function Verification of the OPR gene in Brassica napus Related to Linoleic Acid Synthesis.

BMC Plant Biol. 2022-4-12

[2]
An integrated omics analysis reveals molecular mechanisms that are associated with differences in seed oil content between Glycine max and Brassica napus.

BMC Plant Biol. 2018-12-4

[3]
Targeted mutagenesis of flavonoid biosynthesis pathway genes reveals functional divergence in seed coat colour, oil content and fatty acid composition in Brassica napus L.

Plant Biotechnol J. 2024-2

[4]
Genome wide identification of microRNAs involved in fatty acid and lipid metabolism of Brassica napus by small RNA and degradome sequencing.

Gene. 2017-7-1

[5]
Identification of transcription factor BnHDG4-A08 as a novel candidate associated with the accumulation of oleic, linoleic, linolenic, and erucic acid in Brassica napus.

Theor Appl Genet. 2024-10-1

[6]
Effect of Overexpression of on α-Tocopherol and Fatty Acid Accumulation and Tolerance to Salt Stress during Seed Germination in L.

Int J Mol Sci. 2022-12-14

[7]
Long-chain acyl-CoA synthetase 2 is involved in seed oil production in Brassica napus.

BMC Plant Biol. 2020-1-13

[8]
Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus.

Theor Appl Genet. 2020-8

[9]
Transcriptomic comparison between developing seeds of yellow- and black-seeded Brassica napus reveals that genes influence seed quality.

BMC Plant Biol. 2019-5-16

[10]
Screening of microRNAs and target genes involved in Sclerotinia sclerotiorum (Lib.) infection in Brassica napus L.

BMC Plant Biol. 2023-10-9

引用本文的文献

[1]
Deciphering the Interaction between and Pomegranate Fruit Employing Transcriptomics.

Life (Basel). 2024-6-13

[2]
Biofortification as a solution for addressing nutrient deficiencies and malnutrition.

Heliyon. 2024-5-1

[3]
Multiple Functions of MiRNAs in L.

Life (Basel). 2022-11-7

[4]
Comprehensive evaluation of high-oleic rapeseed (Brassica napus) based on quality, resistance, and yield traits: A new method for rapid identification of high-oleic acid rapeseed germplasm.

PLoS One. 2022

本文引用的文献

[1]
Down-regulation of MANNANASE7 gene in Brassica napus L. enhances silique dehiscence-resistance.

Plant Cell Rep. 2021-2

[2]
The OPR gene family in watermelon: Genome-wide identification and expression profiling under hormone treatments and root-knot nematode infection.

Plant Biol (Stuttg). 2021-5

[3]
KEGG: integrating viruses and cellular organisms.

Nucleic Acids Res. 2021-1-8

[4]
Genome-Wide Analysis of Family Genes in Cotton Identified a Role for in Resistance.

Genes (Basel). 2020-9-27

[5]
Impact of linolenic acid on oxidative stability of rapeseed oils.

J Food Sci Technol. 2020-9

[6]
Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus.

Nat Plants. 2020-1-13

[7]
Toward understanding the origin and evolution of cellular organisms.

Protein Sci. 2019-9-9

[8]
and Polymorphisms Modulate Fatty Acid Metabolism and Dietary Impact on Health.

Annu Rev Nutr. 2019-8-21

[9]
A novel quantitative trait locus on chromosome A9 controlling oleic acid content in Brassica napus.

Plant Biotechnol J. 2019-5-16

[10]
Genome-Wide Identification and Characterization of the OPR Gene Family in Wheat ( L.).

Int J Mol Sci. 2019-4-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索