Suppr超能文献

构建基于证据的临床产时护理算法以用于决策支持工具。

Constructing evidence-based clinical intrapartum care algorithms for decision-support tools.

作者信息

Bonet M, Ciabati L, De Oliveira L L, Souza R, Browne J L, Rijken M, Fawcus S, Hofmeyr G J, Liabsuetrakul T, Gülümser Ç, Blennerhassett A, Lissauer D, Meher S, Althabe F, Oladapo O T

机构信息

UNDP/UNFPA/UNICEF/WHO/World Bank Special Program of Research, Development and Research Training in Human Reproduction (HRP), Department of Sexual and Reproductive Health and Research, World Health Organization, Geneva, Switzerland.

Department of Social Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.

出版信息

BJOG. 2024 Aug;131 Suppl 2:6-16. doi: 10.1111/1471-0528.16958. Epub 2022 Apr 11.

Abstract

AIM

To describe standardised iterative methods used by a multidisciplinary group to develop evidence-based clinical intrapartum care algorithms for the management of uneventful and complicated labours.

POPULATION

Singleton, term pregnancies considered to be at low risk of developing complications at admission to the birthing facility.

SETTING

Health facilities in low- and middle-income countries.

SEARCH STRATEGY

Literature reviews were conducted to identify standardised methods for algorithm development and examples from other fields, and evidence and guidelines for intrapartum care. Searches for different algorithm topics were last updated between January and October 2020 and included a combination of terms such as 'labour', 'intrapartum', 'algorithms' and specific topic terms, using Cochrane Library and MEDLINE/PubMED, CINAHL, National Guidelines Clearinghouse and Google.

CASE SCENARIOS

Nine algorithm topics were identified for monitoring and management of uncomplicated labour and childbirth, identification and management of abnormalities of fetal heart rate, liquor, uterine contractions, labour progress, maternal pulse and blood pressure, temperature, urine and complicated third stage of labour. Each topic included between two and four case scenarios covering most common deviations, severity of related complications or critical clinical outcomes.

CONCLUSIONS

Intrapartum care algorithms provide a framework for monitoring women, and identifying and managing complications during labour and childbirth. These algorithms will support implementation of WHO recommendations and facilitate the development by stakeholders of evidence-based, up to date, paper-based or digital reminders and decision-support tools. The algorithms need to be field tested and may need to be adapted to specific contexts.

TWEETABLE ABSTRACT

Evidence-based intrapartum care clinical algorithms for a safe and positive childbirth experience.

摘要

目的

描述一个多学科团队用于制定基于证据的临床产时护理算法的标准化迭代方法,以管理正常和复杂分娩。

研究对象

单胎足月妊娠,入院时被认为发生并发症风险较低。

研究地点

低收入和中等收入国家的卫生机构。

检索策略

进行文献综述,以确定算法开发的标准化方法和其他领域的实例,以及产时护理的证据和指南。对不同算法主题的检索于2020年1月至10月期间进行了更新,使用Cochrane图书馆、MEDLINE/PubMED、CINAHL、国家指南交换中心和谷歌等数据库,检索词包括“分娩”、“产时”、“算法”以及特定主题词的组合。

病例场景

确定了九个算法主题,用于监测和管理正常分娩和分娩过程、识别和管理胎儿心率、羊水、子宫收缩、产程进展、产妇脉搏和血压、体温、尿液异常以及复杂的第三产程。每个主题包括两到四个病例场景,涵盖最常见的偏差、相关并发症的严重程度或关键临床结局。

结论

产时护理算法为监测产妇以及识别和管理分娩和分娩期间的并发症提供了一个框架。这些算法将支持世界卫生组织建议的实施,并促进利益相关者开发基于证据的、最新的纸质或数字提醒和决策支持工具。这些算法需要进行实地测试,可能需要根据具体情况进行调整。

可发推文摘要

基于证据的产时护理临床算法,助力实现安全、积极的分娩体验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验