Suppr超能文献

基于细胞密度的磁共振波谱成像图谱能识别超出传统 MRI 定义边界的脑肿瘤侵袭范围

Radio-Pathomic Maps of Cell Density Identify Brain Tumor Invasion beyond Traditional MRI-Defined Margins.

机构信息

From the Departments of Biophysics (S.A.B., S.R.D., J.S., S.D.M.).

Radiology (A.L., M.B., M.A., P.S.L.).

出版信息

AJNR Am J Neuroradiol. 2022 May;43(5):682-688. doi: 10.3174/ajnr.A7477. Epub 2022 Apr 14.

Abstract

BACKGROUND AND PURPOSE

Currently, contrast-enhancing margins on T1WI are used to guide treatment of gliomas, yet tumor invasion beyond the contrast-enhancing region is a known confounding factor. Therefore, this study used postmortem tissue samples aligned with clinically acquired MRIs to quantify the relationship between intensity values and cellularity as well as to develop a radio-pathomic model to predict cellularity using MR imaging data.

MATERIALS AND METHODS

This single-institution study used 93 samples collected at postmortem examination from 44 patients with brain cancer. Tissue samples were processed, stained with H&E, and digitized for nuclei segmentation and cell density calculation. Pre- and postgadolinium contrast T1WI, T2 FLAIR, and ADC images were collected from each patient's final acquisition before death. In-house software was used to align tissue samples to the FLAIR image via manually defined control points. Mixed-effects models were used to assess the relationship between single-image intensity and cellularity for each image. An ensemble learner was trained to predict cellularity using 5 × 5 voxel tiles from each image, with a two-thirds to one-third train-test split for validation.

RESULTS

Single-image analyses found subtle associations between image intensity and cellularity, with a less pronounced relationship in patients with glioblastoma. The radio-pathomic model accurately predicted cellularity in the test set (root mean squared error = 1015 cells/mm) and identified regions of hypercellularity beyond the contrast-enhancing region.

CONCLUSIONS

A radio-pathomic model for cellularity trained with tissue samples acquired at postmortem examination is able to identify regions of hypercellular tumor beyond traditional imaging signatures.

摘要

背景与目的

目前,T1WI 上的增强边缘用于指导脑胶质瘤的治疗,但肿瘤在增强区域之外的侵袭是一个已知的混杂因素。因此,本研究使用与临床获得的 MRI 对齐的死后组织样本,量化了强度值与细胞密度之间的关系,并开发了一种放射病理模型,使用 MRI 成像数据预测细胞密度。

材料与方法

这项单机构研究使用了 93 个样本,这些样本来自 44 名患有脑癌的患者在死后进行的检查。组织样本经过处理、用 H&E 染色,并进行细胞核分割和细胞密度计算的数字化。从每位患者死亡前的最后一次采集中收集了预对比和后对比 T1WI、T2 FLAIR 和 ADC 图像。内部软件用于通过手动定义的控制点将组织样本与 FLAIR 图像对齐。混合效应模型用于评估每个图像的单图像强度与细胞密度之间的关系。使用来自每个图像的 5x5 体素块的集成学习器训练来预测细胞密度,使用三分之二到三分之一的训练-测试分割进行验证。

结果

单图像分析发现图像强度与细胞密度之间存在细微的关联,但在胶质母细胞瘤患者中,这种关系不太明显。放射病理模型在测试集中准确预测了细胞密度(均方根误差=1015 个细胞/mm),并识别出了增强区域之外的高细胞密度区域。

结论

使用死后检查获得的组织样本训练的细胞密度放射病理模型能够识别出传统成像特征之外的高细胞肿瘤区域。

相似文献

1
Radio-Pathomic Maps of Cell Density Identify Brain Tumor Invasion beyond Traditional MRI-Defined Margins.
AJNR Am J Neuroradiol. 2022 May;43(5):682-688. doi: 10.3174/ajnr.A7477. Epub 2022 Apr 14.
2
Noninvasive Autopsy-Validated Tumor Probability Maps Identify Glioma Invasion Beyond Contrast Enhancement.
Neurosurgery. 2024 Sep 1;95(3):537-547. doi: 10.1227/neu.0000000000002898. Epub 2024 Mar 19.
3
A Multiparametric Model for Mapping Cellularity in Glioblastoma Using Radiographically Localized Biopsies.
AJNR Am J Neuroradiol. 2017 May;38(5):890-898. doi: 10.3174/ajnr.A5112. Epub 2017 Mar 2.
6
Longitudinal restriction spectrum imaging is resistant to pseudoresponse in patients with high-grade gliomas treated with bevacizumab.
AJNR Am J Neuroradiol. 2013 Sep;34(9):1752-1757. doi: 10.3174/ajnr.A3506. Epub 2013 Apr 11.

引用本文的文献

3
Radiomics in glioma: emerging trends and challenges.
Ann Clin Transl Neurol. 2025 Mar;12(3):460-477. doi: 10.1002/acn3.52306. Epub 2025 Feb 3.
4
Exploratory Analysis of Radiomics and Pathomics in Uterine Corpus Endometrial Carcinoma.
Sci Rep. 2024 Dec 28;14(1):30727. doi: 10.1038/s41598-024-78987-y.
5
Radio-pathomic estimates of cellular growth kinetics predict survival in recurrent glioblastoma.
CNS Oncol. 2024 Dec 31;13(1):2415285. doi: 10.1080/20450907.2024.2415285. Epub 2024 Nov 13.
7
Advances in Neuro-Oncological Imaging: An Update on Diagnostic Approach to Brain Tumors.
Cancers (Basel). 2024 Jan 30;16(3):576. doi: 10.3390/cancers16030576.
9
The Brainboxa tool to facilitate correlation of brain magnetic resonance imaging features to histopathology.
Brain Commun. 2023 Nov 8;5(6):fcad307. doi: 10.1093/braincomms/fcad307. eCollection 2023.

本文引用的文献

1
The 2021 WHO Classification of Tumors of the Central Nervous System: a summary.
Neuro Oncol. 2021 Aug 2;23(8):1231-1251. doi: 10.1093/neuonc/noab106.
2
Accurate segmentation of prostate cancer histomorphometric features using a weakly supervised convolutional neural network.
J Med Imaging (Bellingham). 2020 Sep;7(5):057501. doi: 10.1117/1.JMI.7.5.057501. Epub 2020 Oct 13.
4
Non-Contrast-Enhancing Tumor: A New Frontier in Glioblastoma Research.
AJNR Am J Neuroradiol. 2019 May;40(5):758-765. doi: 10.3174/ajnr.A6025. Epub 2019 Apr 4.
5
Glioblastoma heterogeneity and the tumour microenvironment: implications for preclinical research and development of new treatments.
Biochem Soc Trans. 2019 Apr 30;47(2):625-638. doi: 10.1042/BST20180444. Epub 2019 Mar 22.
6
Gleason Probability Maps: A Radiomics Tool for Mapping Prostate Cancer Likelihood in MRI Space.
Tomography. 2019 Mar;5(1):127-134. doi: 10.18383/j.tom.2018.00033.
8
Histologic findings associated with laser interstitial thermotherapy for glioblastoma multiforme.
Diagn Pathol. 2019 Feb 15;14(1):19. doi: 10.1186/s13000-019-0794-4.
9
Radiation Necrosis, Pseudoprogression, Pseudoresponse, and Tumor Recurrence: Imaging Challenges for the Evaluation of Treated Gliomas.
Contrast Media Mol Imaging. 2018 Dec 2;2018:6828396. doi: 10.1155/2018/6828396. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验