Suppr超能文献

格里森概率图谱:一种用于在MRI空间中绘制前列腺癌可能性的放射组学工具。

Gleason Probability Maps: A Radiomics Tool for Mapping Prostate Cancer Likelihood in MRI Space.

作者信息

McGarry Sean D, Bukowy John D, Iczkowski Kenneth A, Unteriner Jackson G, Duvnjak Petar, Lowman Allison K, Jacobsohn Kenneth, Hohenwalter Mark, Griffin Michael O, Barrington Alex W, Foss Halle E, Keuter Tucker, Hurrell Sarah L, See William A, Nevalainen Marja T, Banerjee Anjishnu, LaViolette Peter S

机构信息

Departments of Radiology.

Pathology.

出版信息

Tomography. 2019 Mar;5(1):127-134. doi: 10.18383/j.tom.2018.00033.

Abstract

Prostate cancer is the most common noncutaneous cancer in men in the United States. The current paradigm for screening and diagnosis is imperfect, with relatively low specificity, high cost, and high morbidity. This study aims to generate new image contrasts by learning a distribution of unique image signatures associated with prostate cancer. In total, 48 patients were prospectively recruited for this institutional review board-approved study. Patients underwent multiparametric magnetic resonance imaging 2 weeks before surgery. Postsurgical tissues were annotated by a pathologist and aligned to the in vivo imaging. Radiomic profiles were generated by linearly combining 4 image contrasts (T2, apparent diffusion coefficient [ADC] 0-1000, ADC 50-2000, and dynamic contrast-enhanced) segmented using global thresholds. The distribution of radiomic profiles in high-grade cancer, low-grade cancer, and normal tissues was recorded, and the generated probability values were applied to a naive test set. The resulting Gleason probability maps were stable regardless of training cohort, functioned independent of prostate zone, and outperformed conventional clinical imaging (area under the curve [AUC] = 0.79). Extensive overlap was seen in the most common image signatures associated with high- and low-grade cancer, indicating that low- and high-grade tumors present similarly on conventional imaging.

摘要

前列腺癌是美国男性中最常见的非皮肤癌。目前的筛查和诊断模式并不完美,具有相对较低的特异性、高成本和高发病率。本研究旨在通过学习与前列腺癌相关的独特图像特征分布来生成新的图像对比。总共前瞻性招募了48名患者参与这项经机构审查委员会批准的研究。患者在手术前2周接受多参数磁共振成像检查。术后组织由病理学家进行标注,并与活体成像进行比对。通过线性组合使用全局阈值分割的4种图像对比(T2、表观扩散系数[ADC] 0 - 1000、ADC 50 - 2000和动态对比增强)生成放射组学特征。记录高级别癌、低级别癌和正常组织中放射组学特征的分布,并将生成的概率值应用于一个朴素测试集。无论训练队列如何,所得的 Gleason 概率图都很稳定,与前列腺区域无关,并且优于传统临床成像(曲线下面积[AUC] = 0.79)。在与高级别癌和低级别癌相关的最常见图像特征中发现了广泛的重叠,这表明低级别和高级别肿瘤在传统成像上表现相似。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da69/6403022/617a160eb2be/tom0011901470001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验