Suppr超能文献

从生化数据评估转移熵。

Assessing transfer entropy from biochemical data.

作者信息

Imaizumi Takuya, Umeki Nobuhisa, Yoshizawa Ryo, Obuchi Tomoyuki, Sako Yasushi, Kabashima Yoshiyuki

机构信息

Department of Mathematical and Computing Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.

Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako 351-0198, Saitama, Japan.

出版信息

Phys Rev E. 2022 Mar;105(3-1):034403. doi: 10.1103/PhysRevE.105.034403.

Abstract

We address the problem of evaluating the transfer entropy (TE) produced by biochemical reactions from experimentally measured data. Although these reactions are generally nonlinear and nonstationary processes making it challenging to achieve accurate modeling, Gaussian approximation can facilitate the TE assessment only by estimating covariance matrices using multiple data obtained from simultaneously measured time series representing the activation levels of biomolecules such as proteins. Nevertheless, the nonstationary nature of biochemical signals makes it difficult to theoretically assess the sampling distributions of TE, which are necessary for evaluating the statistical confidence and significance of the data-driven estimates. We resolve this difficulty by computationally assessing the sampling distributions using techniques from computational statistics. The computational methods are tested by using them in analyzing data generated from a theoretically tractable time-varying signal model, which leads to the development of a method to screen only statistically significant estimates. The usefulness of the developed method is examined by applying it to real biological data experimentally measured from the ERBB-RAS-MAPK system that superintends diverse cell fate decisions. A comparison between cells containing wild-type and mutant proteins exhibits a distinct difference in the time evolution of TE while any apparent difference is hardly found in average profiles of the raw signals. Such a comparison may help in unveiling important pathways of biochemical reactions.

摘要

我们探讨了根据实验测量数据评估生化反应产生的转移熵(TE)的问题。尽管这些反应通常是非线性和非平稳过程,难以实现精确建模,但高斯近似只能通过使用从同时测量的时间序列中获得的多个数据估计协方差矩阵来促进TE评估,这些时间序列代表了蛋白质等生物分子的激活水平。然而,生化信号的非平稳性质使得从理论上评估TE的抽样分布变得困难,而抽样分布对于评估数据驱动估计的统计置信度和显著性是必要的。我们通过使用计算统计学技术对抽样分布进行计算评估来解决这一困难。通过将这些计算方法用于分析从理论上易于处理的时变信号模型生成的数据来对其进行测试,这导致了一种仅筛选具有统计显著性估计的方法的开发。通过将所开发的方法应用于从监督多种细胞命运决定的ERBB-RAS-MAPK系统实验测量的真实生物学数据,检验了该方法的实用性。含有野生型和突变型蛋白质的细胞之间的比较显示出TE时间演变的明显差异,而在原始信号的平均轮廓中几乎没有发现任何明显差异。这样的比较可能有助于揭示生化反应的重要途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验