Suppr超能文献

自协方差矩阵的特征值:一种识别柯普曼特征频率的实用方法。

Eigenvalues of autocovariance matrix: A practical method to identify the Koopman eigenfrequencies.

作者信息

Zhen Yicun, Chapron Bertrand, Mémin Etienne, Peng Lin

机构信息

Institut Franais de Recherche pour l'Exploitation de la Mer, 29280 Plouzané, France.

INRIA/IRMAR Campus universitaire de Beaulieu, Rennes, 35042 Cedex, France.

出版信息

Phys Rev E. 2022 Mar;105(3-1):034205. doi: 10.1103/PhysRevE.105.034205.

Abstract

To infer eigenvalues of the infinite-dimensional Koopman operator, we study the leading eigenvalues of the autocovariance matrix associated with a given observable of a dynamical system. For any observable f for which all the time-delayed autocovariance exist, we construct a Hilbert space H_{f} and a Koopman-like operator K that acts on H_{f}. We prove that the leading eigenvalues of the autocovariance matrix has one-to-one correspondence with the energy of f that is represented by the eigenvectors of K. The proof is associated to several representation theorems of isometric operators on a Hilbert space, and the weak-mixing property of the observables represented by the continuous spectrum. We also provide an alternative proof of the weakly mixing property. When f is an observable of an ergodic dynamical system which has a finite invariant measure μ, H_{f} coincides with closure in L^{2}(X,dμ) of Krylov subspace generated by f, and K coincides with the classical Koopman operator. The main theorem sheds light to the theoretical foundation of several semi-empirical methods, including singular spectrum analysis (SSA), data-adaptive harmonic analysis (DAHD), Hankel DMD, and Hankel alternative view of Koopman analysis (HAVOK). It shows that, when the system is ergodic and has finite invariant measure, the leading temporal empirical orthogonal functions indeed correspond to the Koopman eigenfrequencies. A theorem-based practical methodology is then proposed to identify the eigenfrequencies of K from a given time series. It builds on the fact that the convergence of the renormalized eigenvalues of the Gram matrix is a necessary and sufficient condition for the existence of K-eigenfrequencies. Numerical illustrating results on simple low dimensional systems and real interpolated ocean sea-surface height data are presented and discussed.

摘要

为了推断无限维库普曼算子的特征值,我们研究与动力系统给定可观测量相关的自协方差矩阵的主导特征值。对于所有时间延迟自协方差都存在的任何可观测量(f),我们构造一个希尔伯特空间(H_f)和一个作用在(H_f)上的类库普曼算子(K)。我们证明自协方差矩阵的主导特征值与由(K)的特征向量表示的(f)的能量一一对应。该证明与希尔伯特空间上等距算子的几个表示定理以及由连续谱表示的可观测量的弱混合性质相关。我们还提供了弱混合性质的另一种证明。当(f)是具有有限不变测度(\mu)的遍历动力系统的可观测量时,(H_f)与由(f)生成的克里洛夫子空间在(L^2(X,d\mu))中的闭包重合,并且(K)与经典库普曼算子重合。主要定理揭示了几种半经验方法的理论基础,包括奇异谱分析(SSA)、数据自适应谐波分析(DAHD)、汉克尔动态模态分解(Hankel DMD)以及库普曼分析的汉克尔替代视图(HAVOK)。它表明,当系统遍历且具有有限不变测度时,主导时间经验正交函数确实对应于库普曼特征频率。然后提出了一种基于定理的实用方法,用于从给定时间序列中识别(K)的特征频率。它基于这样一个事实,即格拉姆矩阵的重整化特征值的收敛是存在(K)特征频率的充要条件。给出并讨论了在简单低维系统和实际插值海洋海面高度数据上的数值说明结果。

相似文献

1
Eigenvalues of autocovariance matrix: A practical method to identify the Koopman eigenfrequencies.
Phys Rev E. 2022 Mar;105(3-1):034205. doi: 10.1103/PhysRevE.105.034205.
2
Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control.
PLoS One. 2016 Feb 26;11(2):e0150171. doi: 10.1371/journal.pone.0150171. eCollection 2016.
4
Subspace dynamic mode decomposition for stochastic Koopman analysis.
Phys Rev E. 2017 Sep;96(3-1):033310. doi: 10.1103/PhysRevE.96.033310. Epub 2017 Sep 18.
5
Koopman analysis of the singularly perturbed van der Pol oscillator.
Chaos. 2024 Sep 1;34(9). doi: 10.1063/5.0216779.
6
Koopman operator and its approximations for systems with symmetries.
Chaos. 2019 Sep;29(9):093128. doi: 10.1063/1.5099091.
7
Improving Estimation of the Koopman Operator with Kolmogorov-Smirnov Indicator Functions.
J Chem Theory Comput. 2023 Oct 24;19(20):7187-7198. doi: 10.1021/acs.jctc.3c00632. Epub 2023 Oct 6.
9
Koopman spectral analysis of elementary cellular automata.
Chaos. 2021 Oct;31(10):103121. doi: 10.1063/5.0059202.
10
Deep learning enhanced dynamic mode decomposition.
Chaos. 2022 Mar;32(3):033116. doi: 10.1063/5.0073893.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验