Katayama Natsuki, Susuki Yoshihiko
Department of Electrical Engineering, Kyoto University, Kyoto 615-8510, Japan.
Chaos. 2024 Sep 1;34(9). doi: 10.1063/5.0216779.
The Koopman operator framework holds promise for spectral analysis of nonlinear dynamical systems based on linear operators. Eigenvalues and eigenfunctions of the Koopman operator, the so-called Koopman eigenvalues and Koopman eigenfunctions, respectively, mirror global properties of the system's flow. In this paper, we perform the Koopman analysis of the singularly perturbed van der Pol system. First, we show the spectral signature depending on singular perturbation: how two Koopman principal eigenvalues are ordered and what distinct shapes emerge in their associated Koopman eigenfunctions. Second, we discuss the singular limit of the Koopman operator, which is derived through the concatenation of Koopman operators for the fast and slow subsystems. From the spectral properties of the Koopman operator for the singularly perturbed system and the singular limit, we suggest that the Koopman eigenfunctions inherit geometric properties of the singularly perturbed system. These results are applicable to general planar singularly perturbed systems with stable limit cycles.
库普曼算子框架有望基于线性算子对非线性动力系统进行谱分析。库普曼算子的特征值和特征函数,分别称为库普曼特征值和库普曼特征函数,反映了系统流的全局特性。在本文中,我们对奇异摄动范德波尔系统进行了库普曼分析。首先,我们展示了依赖于奇异摄动的谱特征:两个库普曼主特征值如何排序以及它们相关的库普曼特征函数中出现了哪些不同的形状。其次,我们讨论了库普曼算子的奇异极限,它是通过快速和慢速子系统的库普曼算子的拼接推导出来的。从奇异摄动系统的库普曼算子的谱性质和奇异极限来看,我们认为库普曼特征函数继承了奇异摄动系统的几何性质。这些结果适用于具有稳定极限环的一般平面奇异摄动系统。