Department of Biomedical Systems Informatics, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea.
Sci Rep. 2022 Apr 15;12(1):6283. doi: 10.1038/s41598-022-10182-3.
Detecting microsatellite instability (MSI) in colorectal cancers (CRCs) is essential because it is the determinant of treatment strategies, including immunotherapy and chemotherapy. Yet, no attempt has been made to exploit transcriptomic profile and tumor microenvironment (TME) of it to unveil MSI status in CRC. Hence, we developed a novel TME-aware, single-transcriptome predictor of MSI for CRC, called MAP (Microsatellite instability Absolute single sample Predictor). MAP was developed utilizing recursive feature elimination-random forest with 466 CRC samples from The Cancer Genome Atlas, and its performance was validated in independent cohorts, including 1118 samples. MAP showed robustness and predictive power in predicting MSI status in CRC. Additional advantages for MAP were demonstrated through comparative analysis with existing MSI classifier and other cancer types. Our novel approach will provide access to untouched vast amounts of publicly available transcriptomic data and widen the door for MSI CRC research and be useful for gaining insights to help with translational medicine.
检测结直肠癌(CRC)中的微卫星不稳定性(MSI)至关重要,因为它决定了治疗策略,包括免疫疗法和化疗。然而,尚未尝试利用其转录组特征和肿瘤微环境(TME)来揭示 CRC 中的 MSI 状态。因此,我们开发了一种新的 TME 感知的、用于 CRC 的单转录组 MSI 绝对预测器,称为 MAP(Microsatellite instability Absolute single sample Predictor)。MAP 是利用递归特征消除随机森林,使用来自癌症基因组图谱的 466 个 CRC 样本开发的,并在包括 1118 个样本的独立队列中进行了验证。MAP 在预测 CRC 中的 MSI 状态方面表现出稳健性和预测能力。通过与现有 MSI 分类器和其他癌症类型的比较分析,展示了 MAP 的其他优势。我们的新方法将为使用大量公开可用的转录组数据提供途径,并为 MSI CRC 研究开辟道路,并有助于获得有助于转化医学的见解。