Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA.
Department of Statistics, Data and Analytics, Eli Lilly and Company, Indianapolis, Indiana, USA.
Stat Med. 2022 Jul 20;41(16):3164-3179. doi: 10.1002/sim.9410. Epub 2022 Apr 16.
In most models and algorithms for dose-finding clinical trials, it is assumed that the trial participants are homogeneous-the optimal dose is the same for all those who qualify for the trial. However, if there are heterogeneous populations who may benefit from the same treatment, it is inefficient to conduct dose-finding separately for each group, and assuming homogeneity across all subpopulations may lead to identification of the incorrect dose for some (or all) subgroups. To accommodate heterogeneity in dose-finding trials when both efficacy and toxicity outcomes must be used to identify the optimal dose (as in immunotherapeutic oncology treatments), we utilize an adaptive Bayesian clustering method which borrows strength among similar subgroups and clusters truly homogeneous subgroups. Unlike methodology already described in the literature, our proposed methodology does not require the assumption of exchangeability between subgroups or a priori ordering of subgroups, but does allow for specification of different subgroup-specific priors if prior information is available. We provide a comparison of operating characteristics between our method and Bayesian hierarchical models for subgroups in a variety of relevant scenarios. After simulation studies with four a priori subgroups, we observed that our method and the hierarchical models both outperform separate subgroup-specific models when all subgroups have the same dose-efficacy and dose-toxicity curves. However, our method outperforms hierarchical models when one subgroup has a different dose-efficacy or dose-toxicity curve from the other three subgroups.
在大多数用于剂量发现临床试验的模型和算法中,假设试验参与者是同质的-对于符合试验条件的所有人来说,最佳剂量是相同的。然而,如果存在可能从相同治疗中受益的异质人群,则分别为每个群体进行剂量发现是低效的,并且假设所有亚群之间的同质性可能导致为一些(或所有)亚组确定不正确的剂量。为了在必须同时使用疗效和毒性结果来确定最佳剂量的情况下(如免疫治疗肿瘤学治疗)适应剂量发现试验中的异质性,我们利用自适应贝叶斯聚类方法,该方法在相似的亚组之间借用优势,并将真正同质的亚组聚类在一起。与文献中已经描述的方法不同,我们提出的方法不需要假设亚组之间的可交换性或亚组的先验排序,但如果有先验信息,则允许指定不同的亚组特定先验。我们在各种相关场景中对我们的方法和贝叶斯分层模型之间的操作特性进行了比较。在对四个先验亚组进行模拟研究后,我们观察到当所有亚组具有相同的剂量-疗效和剂量-毒性曲线时,我们的方法和分层模型都优于特定于亚组的单独模型。然而,当一个亚组的剂量-疗效或剂量-毒性曲线与其他三个亚组不同时,我们的方法优于分层模型。