Suppr超能文献

多人群疗效/毒性剂量探索的层级建模方法。

Efficacy/toxicity dose-finding using hierarchical modeling for multiple populations.

机构信息

Memorial Sloan Kettering Cancer Center, Department of Epidemiology and Biostatistics, 485 Lexington Avenue 2nd Floor, New York, NY 10017, United States.

Memorial Sloan Kettering Cancer Center, Department of Epidemiology and Biostatistics, 485 Lexington Avenue 2nd Floor, New York, NY 10017, United States.

出版信息

Contemp Clin Trials. 2018 Aug;71:162-172. doi: 10.1016/j.cct.2018.06.012. Epub 2018 Jun 21.

Abstract

Traditionally, Phase I oncology trials evaluate the safety profile of a novel agent and identify a maximum tolerable dose based on toxicity alone. With the development of biologically targeted agents, investigators believe the efficacy of a novel agent may plateau or diminish before reaching the maximum tolerable dose while toxicity continues to increase. This motivates dose-finding based on the simultaneous evaluation of toxicity and efficacy. Previously, we investigated hierarchical modeling in the context of Phase I dose-escalation studies for multiple populations and found borrowing strength across populations improved operating characteristics. In this article, we discuss three hierarchical extensions to commonly used probability models for efficacy and toxicity in Phase I-II trials and adapt our previously proposed dose-finding algorithm for multiple populations to this setting. First, we consider both parametric and non-parametric bivariate models for binary outcomes and, in addition, we consider an under-parameterized model that combines toxicity and efficacy into a single trinary outcome. Our simulation results indicate hierarchical modeling increases the probability of correctly identifying the optimal dose and increases the average number of patients treated at the optimal dose, with the under-parameterized hierarchical model displaying desirable and robust operating characteristics.

摘要

传统上,肿瘤学 I 期临床试验评估新型药物的安全性概况,并根据毒性单独确定最大耐受剂量。随着生物靶向药物的发展,研究人员认为,在达到最大耐受剂量之前,新型药物的疗效可能会达到平台期或下降,而毒性继续增加。这促使人们根据毒性和疗效的同时评估来确定剂量。此前,我们研究了在多人群 I 期剂量递增研究背景下的分层建模,发现跨人群借用强度可以提高操作特性。在本文中,我们讨论了三种常用于 I 期- II 期试验中疗效和毒性的常用概率模型的分层扩展,并将我们之前提出的多人群剂量发现算法适用于此设置。首先,我们考虑了用于二项结果的参数和非参数双变量模型,此外,我们还考虑了一种参数不足的模型,将毒性和疗效组合成一个单一的三进制结果。我们的模拟结果表明,分层建模提高了正确识别最佳剂量的概率,并增加了在最佳剂量下治疗的平均患者数量,参数不足的分层模型显示出良好且稳健的操作特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验