Suppr超能文献

一种贝叶斯自适应设计,用于整合各阶段疗效数据的双药物 I/II 期肿瘤学试验。

A Bayesian adaptive design for dual-agent phase I-II oncology trials integrating efficacy data across stages.

机构信息

Global Drug Development, Novartis Pharma AG, Basel, Switzerland.

MRC Biostatistics Unit, University of Cambridge, Cambridge, UK.

出版信息

Biom J. 2023 Oct;65(7):e2200288. doi: 10.1002/bimj.202200288. Epub 2023 May 18.

Abstract

Combination of several anticancer treatments has typically been presumed to have enhanced drug activity. Motivated by a real clinical trial, this paper considers phase I-II dose finding designs for dual-agent combinations, where one main objective is to characterize both the toxicity and efficacy profiles. We propose a two-stage Bayesian adaptive design that accommodates a change of patient population in-between. In stage I, we estimate a maximum tolerated dose combination using the escalation with overdose control (EWOC) principle. This is followed by a stage II, conducted in a new yet relevant patient population, to find the most efficacious dose combination. We implement a robust Bayesian hierarchical random-effects model to allow sharing of information on the efficacy across stages, assuming that the related parameters are either exchangeable or nonexchangeable. Under the assumption of exchangeability, a random-effects distribution is specified for the main effects parameters to capture uncertainty about the between-stage differences. The inclusion of nonexchangeability assumption further enables that the stage-specific efficacy parameters have their own priors. The proposed methodology is assessed with an extensive simulation study. Our results suggest a general improvement of the operating characteristics for the efficacy assessment, under a conservative assumption about the exchangeability of the parameters a priori.

摘要

联合几种抗癌治疗方法通常被认为可以增强药物活性。受真实临床试验的启发,本文考虑了双药物组合的 I 期-II 期剂量发现设计,其中一个主要目标是描述毒性和疗效特征。我们提出了一种两阶段贝叶斯自适应设计,允许在两者之间改变患者人群。在第一阶段,我们使用带有超量控制的递增法(EWOC)原理来估计最大耐受剂量组合。接下来是第二阶段,在新的但相关的患者人群中进行,以找到最有效的剂量组合。我们实施了稳健的贝叶斯分层随机效应模型,允许在阶段之间共享疗效信息,假设相关参数是可交换的或不可交换的。在可交换性假设下,为主要效应参数指定了一个随机效应分布,以捕捉对阶段间差异的不确定性。包含不可交换性假设进一步使得特定阶段的疗效参数具有自己的先验。在保守假设参数可交换性的前提下,通过广泛的模拟研究评估了所提出的方法。我们的结果表明,在对参数可交换性进行保守假设的前提下,对疗效评估的操作特性有了普遍的提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78fe/10952513/0d1feafbcf91/BIMJ-65-0-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验