Suppr超能文献

基于群体感应理解藻类和细菌相互作用提高废水处理性能。

Enhanced wastewater treatment performance by understanding the interaction between algae and bacteria based on quorum sensing.

机构信息

Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.

Department of Civil and Environmental Engineering, University of Alberta, Edmonton T6G 2W2, Canada.

出版信息

Bioresour Technol. 2022 Jun;354:127161. doi: 10.1016/j.biortech.2022.127161. Epub 2022 Apr 14.

Abstract

In order to further obtain sustainable wastewater treatment technology, in-depth analysis based on algal-bacterial symbiosis, quorum sensing signal molecules and algal-bacterial relationship will lay the foundation for the synergistic algal-bacterial wastewater treatment process. The methods of enhancing algae and bacteria wastewater treatment technology were systematically explored, including promoting symbiosis, reducing algicidal behavior, eliminating the interference of quorum sensing inhibitor, and developing algae and bacteria granular sludge. These findings can provide guidance for sustainable economic and environmental development, and facilitate carbon emissions reduction by using algae and bacteria synergistic wastewater treatment technology in further attempts. The future work should be carried out in the following four aspects: (1) Screening of dominant microalgae and bacteria; (2) Coordination of stable (emerging) contaminants removal; (3) Utilization of algae to produce fertilizers and feed (additives), and (4) Constructing recombinant algae and bacteria for reducing carbon emissions and obtaining high value-added products.

摘要

为了进一步获得可持续的废水处理技术,深入分析基于藻菌共生、群体感应信号分子和藻菌关系将为协同藻菌废水处理过程奠定基础。系统地探索了增强藻类和细菌废水处理技术的方法,包括促进共生、减少杀菌行为、消除群体感应抑制剂的干扰以及开发藻类和细菌颗粒污泥。这些发现可以为可持续的经济和环境发展提供指导,并通过进一步尝试利用藻菌协同废水处理技术来促进碳减排。未来的工作应从以下四个方面开展:(1)筛选优势微藻和细菌;(2)协调稳定(新兴)污染物的去除;(3)利用藻类生产肥料和饲料(添加剂),以及(4)构建用于减少碳排放和获得高附加值产品的重组藻类和细菌。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验