Suppr超能文献

贝叶斯深度学习优于临床试验估计的脑内和脑室内出血量。

Bayesian deep learning outperforms clinical trial estimators of intracerebral and intraventricular hemorrhage volume.

机构信息

Division of Neurocritical Care, Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

Division of Brain Injury Outcomes, Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA.

出版信息

J Neuroimaging. 2022 Sep;32(5):968-976. doi: 10.1111/jon.12997. Epub 2022 Apr 17.

Abstract

BACKGROUND AND PURPOSE

Intracerebral hemorrhage (ICH) and intraventricular hemorrhage (IVH) clinical trials rely on manual linear and semi-quantitative (LSQ) estimators like the ABC/2, modified Graeb and IVH scores for timely volumetric estimation from CT. Deep learning (DL) volumetrics of ICH have recently approached the accuracy of gold-standard planimetry. However, DL and LSQ strategies have been limited by unquantified uncertainty, in particular when ICH and IVH estimates intersect. Bayesian deep learning methods can be used to approximate uncertainty, presenting an opportunity to improve quality assurance in clinical trials.

METHODS

A DL model was trained to simultaneously segment ICH and IVH using diagnostic CT data from the Minimally Invasive Surgery Plus Alteplase for ICH Evacuation (MISTIE) III and Clot Lysis: Evaluating Accelerated Resolution of IVH (CLEAR) III clinical trials. Bayesian uncertainty approximation was performed using Monte-Carlo dropout. We compared the performance of our model with estimators used in the CLEAR IVH and MISTIE II trials. The reliability of planimetry, DL, and LSQ volumetrics in the setting of high ICH and IVH intersection is quantified using consensus estimates.

RESULTS

Our DL model produced volume correlations and median Dice scores of .994 and .946 for ICH in MISTIE II, and .980 and .863 for IVH in CLEAR IVH, respectively, outperforming LSQ estimates from the clinical trials. We found significant linear relationships between ICH uncertainty, Dice scores (r = -.849), and relative volume difference (r = .735).

CONCLUSION

In our validation clinical trial dataset, DL models with Bayesian uncertainty approximation provided superior volumetric estimates to LSQ methods with real-time estimates of model uncertainty.

摘要

背景与目的

脑出血(ICH)和脑室内出血(IVH)临床试验依赖于手动线性和半定量(LSQ)估测方法,如 ABC/2、改良 Graeb 和 IVH 评分,以从 CT 及时估算出血量。ICH 的深度学习(DL)体积测量最近已经接近金标准平面测量的准确性。然而,DL 和 LSQ 策略一直受到未量化不确定性的限制,特别是当 ICH 和 IVH 估计值相交时。贝叶斯深度学习方法可用于近似不确定性,为临床试验中的质量保证提供了机会。

方法

使用来自 Minimally Invasive Surgery Plus Alteplase for ICH Evacuation (MISTIE) III 和 Clot Lysis: Evaluating Accelerated Resolution of IVH (CLEAR) III 临床试验的诊断 CT 数据,训练了一个 DL 模型,以同时分割 ICH 和 IVH。使用蒙特卡罗抽样法进行贝叶斯不确定性逼近。我们比较了我们的模型与 CLEAR IVH 和 MISTIE II 试验中使用的估测方法的性能。使用共识估计来量化在 ICH 和 IVH 高度交叉的情况下平面测量、DL 和 LSQ 体积测量的可靠性。

结果

我们的 DL 模型在 MISTIE II 中产生了 ICH 的体积相关性和中位数 Dice 评分分别为.994 和.946,在 CLEAR IVH 中产生了 IVH 的体积相关性和中位数 Dice 评分分别为.980 和.863,优于临床试验中的 LSQ 估计值。我们发现 ICH 不确定性、Dice 评分(r=-.849)和相对体积差异(r=-.735)之间存在显著的线性关系。

结论

在我们的验证临床试验数据集,具有贝叶斯不确定性逼近的 DL 模型提供了优于 LSQ 方法的体积估计,具有模型不确定性的实时估计。

相似文献

本文引用的文献

9
Dilated Dense U-Net for Infant Hippocampus Subfield Segmentation.用于婴儿海马体亚区域分割的扩张密集U型网络
Front Neuroinform. 2019 Apr 24;13:30. doi: 10.3389/fninf.2019.00030. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验